Programming - User Support

Applications

[

ISSN # 0748-9331

Issue Number 39 July / August 1989

Programming for Performance
Assembly Language Techniques

Computer Aided Publishing
The Hewlett Packard LaserJet

The Z-System Corner
System Enhancements with NZCOM

Generating LaserJet Fonts
A Review of Digi-Fonts

Advanced CP/M

Making Old Programs Z-System Aware

C Pointers, Arrays & Structures Made Easier
Part 3: Structures

Shells
Using ARUNZ alias with ZCAL

Real Computing
The National Semiconductor NS320XX

$3.00

THE COMPUTER JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Circulation
Donna Carison

Contributing Editors
Bill Kibler
Bridger Mitchell
Bruce Morgan
Richard Rodman
Jay Sage

The Computer Journal is
published six times a year by
Publishing Consultants, 190
Sullivan Crossroad, Columbia
Falls, MT 59912 (406) 257-9119

Entire contents copyright©
1989 by Publishing Consultants.

Subscription rates—3$16 one
. year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
Canadea and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912.

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 39 July / August 1989

Editorialccceecrmnemirrecevssnmnnsaneesecenseacensanes reeseanesarans . 2

Programming for Performance cessesnmmnannaanns 3
Using special assembly language techniques to

write space saving high performance Z80 code.

By Lee A. Hart.

Computer Aided Publishingccccoocemienicnnnne 9

First in a series on PCL programming and soft font
handling for the Hewlett Packard LaserJet.
By Art Carlson.

The Z-System Cornercccceeieniiiccnmemennnnnneennnene 12

System enhancements using NZCOM.
By Jay Sage.

Generating Laserdet Fonts..........ccccccvnneeerennenennnnens 15
A review of the Digi-Fonts system for generating
custom soft fonts for the LaserJet. By Art Carlson.

Advanced CP/Miimiiiierrccscnene e ceree 19
Adding Z-System capability to programs written in

C or Pascal and making old programs Z-System

aware. Z80 interrupt bug and detecting interrupt

status. By Bridger Mitchell.

C Pointers, Arrays and Structures Made Easier 23
Part 3: Structures. By Clem Pepper.

5] 4 1= | KR 28

Using an ARUNZ alias with ZCAL.
By Rick Charnes.

Real Computingccceeenninnnes rreessarnesnn e . 32
The National Semiconductor NS329XX.

By Richard Rodman.

Computer Cornerccceceeennee SR - |
By Bill Kibler. ’

Editor's Page

DTP Trauma

We had planned on gradually convert-
ing to Desk Top Publishing, in fact the
Editorial and Computer Aided Publishing
article in issue #38 were produced with
DTP. Our intentions were to use both the
old phototypesetter and the new DTP sys-
tems in parallel, doing a few more articles
on each issue with DTP while we became
comfortable with DTP. There was no
rush, because I figured that it would take
six to eight months to sell the 10 year old

typesetter.

The material for this issue was all pre-
pared and coded for the typesetter when I
placed the first ad to try to sell the old
equipment--I wasn’t worried, after all it
would take a long time. Four days later, a
buyer showed up! We made a deal, and
he took the typesetter. When someone
offers cash for a piece of equipment which
is becoming obsolescent you don’t teli him
to come back in three or four weeks, be-
cause he might change his mind and it
could be a very long time before another
buyer appeared. So there we were. It was
the week to set type and paste up, but
everything was coded for the old typeset-
ter which was no longer here.

The only answer was to strip out all of
the code and change over to PageMaker
and the LaserJet. Setting it up under
PageMaker is actually much easier than
the old system for about 95% of the ma-
terial. I'm currently using WordStar 4.0
which does not have style sheets which will
transfer over to PageMaker, so I set up
PageMaker templates and embedded
style tags in the WordStar files.

It was a crash learning course which
took quite a few hours and delayed get-
ting this issue to the printer--but it was
well worth it. It will take much less time to
prepare future issues, and we may even
be able to send galleys to the authors for
proofreading.

There are still a few rough spots which
I have not had time to take care of. For
example, I couldn’t get an EM dash to
transfer from WordStar to PageMaker
for the HP LaserJet. There were also
problems in retaining the indent levels for
the code sections.

I am in the process of changing over to
MicroSoft Word Version 5.0 (more learn-
ing time). I'll generate fonts with custom
symbot sets using Digi-Fonts, then install
the same fonts in both Word and Page-
Maker. This should solve the problems in
showing the same extended characters in
both Word and PageMaker. The industry
needs to standardize so that all applica-
tions can refer to one soft font file so that
the fonts do not have to be installed in
every one of the applications--it is a nui-
sance and consumes valuable disk space.

Material which is Desk Top Published
should not look significantly different that
something which is published by tradi-
tional methods. Hopefully the only differ-
ence you’ll notice is that we are using
slightly different type faces for this issue.
We'll be interested in your comments af-
ter we gain experience and produce three
or four issues on DTP. One change you
will notice is the vast improvement in hy-
phenation in PageMaker compared with
that which we used to get from the Com-
pugraphic phototypesetter.

I am comfortable with the combina-
tion of MicroSoft Word, PageMaker,
Digi-Fonts, and the LaserJet for produc-
ing the magazine. With PageMaker it is a
real joy to push columns of text around
while making things fit. It is so much
faster than the mechanical pasteup we
have been doing. Once you’ve tried it,
there is no going back.

But, DTP is not the complete answer
to everything. I still intend to write pro-
grams to handle some of the unusual re-
quirements. One thing that I'd like is a
utility which would analyze a PM3 file and

print out the parameters such as margins,
columns, style definitions, etc. I like to
keep a hard copy record what I've done.

Another needed utility is one which
would output pages with the correct im-
position (the arrangement of pages in the
proper order for printing a signature) for
binding. When printing a 40 page saddle
stitched 5.5 by 8.5 inch book two up on
8.5 by 11 inch paper, pages 1 and 40 are
printed on one sheet, and pages 2 and 39
on the other side. the next sheet has pages
3 and 38 on one side and 4 and 37 on the
other side. After folding and binding, the
pages read in correct order. I'd like to use
PageMaker for the page preparation, and
then use the utility to output the pages in
the desired order.

I need to analyze the PageMaker PM3
file structure to determine how to extract
the information for these utilities. Does
anyone have any information on the PM3
file structure?

I'll also be working on runoff pro-
grams which talk directly to the LaserJet
for applications where PageMaker’s
WYSIWYG screen display is not re-
quired (such as setting a book from a CP/
M system using an ASCII character ter-
minal). Another area of activity will be la-
ser typesetting from database files using
dBXL, and C.

Send in your questions, probiems, tips
and solutions.

Users’ Toolkits

Successful systems in the near future
are going to have to be customizable to do
what the user wants, the way the user
wants to do it. As stated on page one of
volume 1 issue 11, of UNIX Journal (7620
242nd Street S.W., Edmonds, WA 98020-
5463) “Products of the future are going
to [be] tailored to the needs of individual

(Continued on page 37)

The Computer Journal / #39

Programming For Performance

by Lee A. Hart

Over the years, the ancient masters of
the software arts have meticulously
crafted the tools of structured program-
ming. They have eloquently preached the
virtues to body and soul that come from
writing clean, healthy code, free from the
evils of self-modifying code or the
dreaded GOTO.

Many programmers have seen the
light. They write exclusively in structured
high-level languages, and avoid BASIC as
if it carried AIDS. Assembly language is
just that unreadable stuff the compiler
generates as an intermediate step before
linking. Memory and processor speed are
viewed as infinite resources. Who cares if
it takes 100K for a pop-up calculator pro-
gram? And if it’s not fast enough, use
turbo mode, or a 386.

But a REAL pocket calculator doesn’t
have a 16-bit processor, or 100K of RAM,;
it typically runs a primitive 4-bit CPU at 1
MHz or less, with perhaps 2K of memory.
Yet it can out-perform a PC clone having
10 times the speed and memory!

How can this be? Special hardware?
Tricky instruction sets? On the contrary;
CPU registers and instructions have in-
stead been removed to cut cost. No; the
surprising performance comes from
clever, efficient programming with an ex-
treme attention to detail. Such techniques
are essential to the success of every high-
volume micro-based product. But they
aren’t widely known and so are rarely ap-
plied to general-purpose microcompu-
ters.

Suppose your micro doesn’t provide
the luxury of unlimited (or even ade-
quate) resources. Your program abso-
lutely has to fit in a certain space, such as
a ROM. You’re stuck with a slow CPU
but must handle a hardware device with
particularly severe timing requirements.
Your C compiler just turned out a pro-
gram that misses the mark by a megabyte.
Don’t give up! I'll show you some tech-

The Computer Journal / #39

niques that are particularly effective at
“running light without overbyte,” as Dr.
Dobbs used to say.

I'll demonstrate these techniques with
the Z80. With over 30 million sold last
year alone, it remains the number-one-
selling micro and is widely used in cost-
effective designs when performance
counts. However, the principles used ap-
ply to almost any microcomputer.

In the beginning

Novice Z80 programmers soon spot
peculiarities in the instruction set; arcane
rules restrict data movement between
registers. For instance, the stack pointer
can be loaded but not examined. Flags are
not set automatically and must be explic-
itly updated by a math or logical instruc-
tion. The carry flag can be set or inverted
but not reset. Of the six flags, only four
can be tested by jumps and calls (and only
two by relative jumps).

These limitations are no accident.
They represent an artful compromise be-
tween cost, complexity, performance, and
compatibility with the earlier 8080 in-
struction set. To get the most out of any
micro, you must discover how its designer
expected you to use the architecture. Get
“inside” his head; become part of the
machine.

The Z80 is register-oriented; it ma-
nipulates data in registers efficiently but
deals rather clumsily with memory. Regis-
ters are specialized, with each having an
intended purpose. Here are some rules
I've found useful:

A = Accumulator: first choice for 8-bit
data; best selection of load/store instruc-
tions; source and destination for most
math, logical, and comparisons.

HL = High/Low address: first choice
for 16-bit data/addresses; source and des-
tination for 16-bit math; second choice for
8-bit data; pointer when one math/logical/

compare operand is in memory;. source
address for block operations.

DE = DEstination: second choice for
16-bit data/addresses; third choice for 8-
bit data; destination address for block
operations.

BC = Byte Counter: third choice for
16-bit data/addresses; I/O port addreses;
8/16 bit counter for loops and block op-
erations.

F = Flag byte (6 bits used): updated
by math/logical/compare instructions;
Zero, Carry, Sign, and Parity tested by
conditional jumps, calls, or returns; Zero
and Carry by relative jumps; block opera-
tions use Parity; bit tests use Zero; shifts
use Carry; only decimal adjust tests Half-
carry and Add/Subtract flags.

A’ BC,DE’F,HL’ = twins of A, BC,
DE, F, HL; can be quickly swapped with
main set; use for frequently used vari-
ables, fast interrupt handlers, task switch-
ing.

R = Refresh counter for dynamic
RAM: also counts instructions for diag-
nostics, debuggers, copy-protection
schemes; pseudorandom number genera-
tor; interrupt detection.

I = Interrupt vector: page address for
interrupts in mode 2; otherwise, an extra
8-bit register that updates flags when
read.

IX,IY = Index registers X and Y: Two
16-bit registers, used like HL as an indi-
rect memory pointer, except instructions
can include a relative offset.

SP = Stack Pointer: 16-bit memory
pointer for LIFO (last-in first-out) stack
to hold interrupt and subroutine return
address, pushed/popped register data;
stack-oriented data structures.

Naturally, some instructions get used a
lot more than others. But frequency-of-
use studies reveal that many programs
NEVER use large portions of the instruc-
tion set. Sometimes there are good rea-

sons, like sticking to 8080 opcodes so your
code runs on an 8080/8085/V20 etc. More

often the program is sim il-
prog mer 1s ply unfamil 1d de,string ; point to message

iar \Ylth the entire instruction set, and so call outstr ; output it
restricts himself to what he knows. ..
- This is fine for noncritical uses but sui- outstr: push af . save registers
cidal when performance counts. It’s like push be
running a racehorse with a gag in its push de
throat. Take some time to go over the push bl
.. B . 1d a, (de) ; get next character
entire instruction set, one by one. Devise op 0 ; compare it to 0
an example for each instruction that puts ip z,outend ; if not last char,
it to good use. T only know of nine turkeys ll’;"h de i --save registers
. . PP, e,a
with no use besides “trick” NOPs (can 1d c,conout ; output character to console
“you find them?). call bdos
Figure 1 shows a routine that might be pop de i restore registers
_ N A inc de ; advance to next
written by a rather inept programmer (or ip outstr ; repeat until done
an unusually efficient compiler). It out- outend: pop hl ; else 0 is last char
puts a string of characters ending in 0 to pop 26 . ot
pop o] ; restore registers
the con_sole. It gejneral'ly follows good pro- pop af
gramming practices; it’s well structured, ret ; return

has clearly-defined entry and exit points,
and carefully saves and restores all regis-
ters used.

Now let’s see how it can be improved.
First, note that over half the instructions
are PUSHes or POPs. This is the conse- and

string: db '‘message’
db 0

display our message
end of string marker

~

~

Fiqure 1: A routine to output a srting of chars.

a ; update flags and clear Carry
quence of saving every register before xog a ; set A=g, up(;atzlflagsl P/V flag=1
: su a ; same, but P/V ag=0
uw,ammmon cqmpller sFrategy. ThOUgh sbc a,a ; set all bits in A to Carry (00 or FF)
safe and simple, it’s the single worst per- add a,a ; A*2, or shift A left & set lsb=0
formance-killer I know. add hl,hl ; HL*2, or shift HL left & set lsb=0
. . adc hl,hl ; shift HL left & lsb=Carry
The alternative is to push/pop only as sbc hl,hl ; set all bits in HL to Carry (0000 or FFFF)
necessary. This is easier said than done; 1d hl,0 ; _load SP into HL so it can be examined
miss one, and you’ve got a nasty bug to add hl,sp ; /

find. A good strategy helps. 1 initially de-
fine my routines to minimize the registers
used; only push/pop as needed within the
" routine itself; and restore nothing on exit.
In OUTSTR, this eliminates all but the
PUSH DE/POP DE around the CALL
BDOS.

This shifts the save/restore burden to
the calling routine. Since the caller also
follows the rule of minimal register usage
and push/pops only as necessary, it will
probably not push/pop as many registers;
thus we have increased speed by eliminat-
ing redundant push/pops. We have also
made it explicitly clear which registers a
caller really needs preserved.

Now I move the remaining push/pops
to the called routines to save memory. If
every caller saves a particular register, it
obviously should be saved/restored by the
subroutine itself. If two or more callers
save it, speed is the deciding factor; pre-
serve that register in the subroutine if the
extra overhead is not a problem for callers
that don’t need that register preserved.

Push/pops are sloooww; at 21 t029 T-
states per pair, they make wonderful low-
byte time killers. If possible, either use, or
save to, a register that isn’t killed by the

4

Fiqure 2: Side effects of some not-so-obvious instructions.

called routine. In our example, try IX or
1Y instead of DE; the index registers
aren’t trashed by the BDOS call (except,
see Jay Sage’s column. Ed). This saves 5
T-states/loop but adds 2 bytes (see why?).
The instruction EX DEHL (8 T-states
per pair) is often useful, but not here; the
BIOS eats both HL and DE. The ulti-
mate speed demon is a fast-n-drastic pair
of EXX instructions to replace the PUSH
DE/POP DE. They save 13 T-states with
no size increase, and even preserve BC so
we don’t have to reload it for every loop.

Comparisons

A CP 0 instruction was used to test for
0, an obvious choice. But it takes 2 bytes
and 7 T-states to execute. The Z80’s Zero
flag makes the special case of testing for
zero easy; all we have to do is update the
flags to match the byte loaded. This is
most easily done with an OR A instruc-
tion, which takes only 1 byte and 4 T-
states. You’ll find this trick often in Z80
code.

Note that OR A has no effect on A;
we just used it to update the flags because
it’s smaller and faster than CP 0. This il-
lustrates a basic principle of assembly lan-
guages; the side effects of an instruction
are often more important than the main
effect. Some other not-so-obvious in-
structions are shown in Figure 2.

Using DE as the string pointer is a
weak choice. It forces us to load the char-
acter into A, then move it to E. If we use
HL, IX, or IY instead, we can load E di-
rectly and save a byte. But this makes it
harder to test for 0.

An INC E, DEC E updates the Z flag
without changing E. Or mark the end of
the string with 80h, and use BIT 7,E to
test for end. Both are as efficient as the
OR A trick but don’t need A. If you are
REALLY desperate, add 1 to every byte
in the string, so a single DEC E restores
the character and sets the Z fiag; kinky,
but short and fast.

The Computer Journal / #39

Jumps

This example used 3-byte absolute
jump instructions. We can save memory
by using the Z80’s 2-byte relative jumps
instead; each use saves a byte. Since
jumps are among the most common in-
structions, this adds up fast.

Relative jumps have a limited range,
so it pays to arrange your code carefully to

" maximize their use. I've found that about
half the jumps in a well structured pro-
gram can be relative. When most of the
jumps are out of range, it’s often a sign of
structural weaknesses, “spaghetti-code”
or excessively complex subroutines.

How about execution speed? An abso-
lute jump always takes 10 T-states; a rela-
tive jump takes 12 to jump, or 7 to con-
tinue. So if speed counts, use absolute
jumps when the branch is normally taken,
and relative jumps when it is not. In the
example, this means changing the JP
Z,0UTEND to JR Z,OUTEND but
keeping the JP at the end.

But wait a minute! The JR
Z,O0UTEND merely jumps to the RET at
the end of the subroutine. It would be
more efficient still to replace it with RET
Z, a 1-byte conditional return that is only
5 T-states if the return is not taken. This
illustrates another difference between as-
sembler and high-level languages; entry
and exit points are often not at the begin-
ning and end of a routine.

‘We can speed up unconditional jumps
within a loop. On entry, load HL with the
- start address of the loop, and replace JP
LABEL by JP (HL). It takes 1 byte and 4
T-states, saving 6 T-states per loop. This
scheme costs us a byte (+3 to set HL; -2
for JP (HL)). But if used more than once
in the routine, we save 2 bytes per occut-
rence. If HL is unavailable (as is the case
here; the BDOS trashes it), IX or I'Y can
be used instead. However, the JP (IX)
and JP (TY) instructions take 2 bytes and
8 T-states, making the savings marginal.

Can we do better yet? Yes, if we care-
fully rethink the structure of our program.
Notice it has two jump instructions per
loop; yet only one test is performed (test
for 0). This is a hint that one conditional
jump should be all we need. Think of the
instructions in the loop as links in a chain.
Rotate the chain to put the test-for-0 link
at the bottom, and LD C,CONOUT on
top (which we’ll label OUTNXT). The JP
OUTSTR is now unnecessary, and can be
removed. JP NZ OUTNXT performs the
test and loops until 0 (remember, abso-
lute for speed, relative for size). The entry
point is still OUTSTR, though (horrors!)

The Computer Journal / #39

1d hl,string

call outstr
outstr: 1d b, (hl)

1d c,conout

1d e, (hl)
outnxt: exx

call bdos

exx

inec hl

1d e, (hl)

djnz z,outnxt

ret
string: db strend - strbeg
strbeg: db ‘message*
strend:

call

outstr

dw string
outstr: pop hl

1d e, (hl)

inc hl

1d d, (hl)

inec hl

push hl
outnxt: 1d a, (de)

or a

ret z

push de

1d e,a

1d c,conout

call bdos

pPop de

ine de

jr outnxt

N we NE Ne e N we N N ~

~

~

Figure 3: Using INC L instead of INC

~

-~

Fiqure 4: Passing parameters as “data" bytes.

point to message
output it

get length of message
output to console
get lst char
save registers,
output char,
and restore
advance to next
get next character
loop until end

message length
message itself

HL to save 2 T-states.

output message
beginning here

get pointer to "DW STRING"
E=low byte of string addr
D=high byte of string addr
skip over "DW STRING" & push
corrected return address
get next character

if o,
all done, return

output character to console

advance to next

it’s now in the middle of the routine.

We've also made a subtle change in
the logic. Presumably we wouldn’t call
OUTSTR unless there was at least one
character to output. But what would hap-
pen if we did?

Another way is to use DINZ to close
the loop. Make the first byte of the string
its length (1-256). Load this value into B
as part of the initialization. The resulting
program takes 34 T-states per loop (not
counting the CALL).

STILL faster? OK, you twisted my
arm. If you’re absolutely sure the string
won'’t cross a page boundary, you can use
INC L instead of INC HL to save 2 T-
states. The 8-bit INC/DEC instructions
are faster than their 16-bit counterparts,
but should only be used if you’re positive
the address will never require a carry. This
brings us to 32 T-states/loop (see Figure
3), which is the best I can do within this
routine itself. Or can you do better?

Parameter Passing

In the above example, parameters
were passed to the subroutine via regis-
ters (string address in HL). This is fast
and easy, but each call to OUTSTR takes
6 bytes. Now let’s look at methods that
save memory at the expense of speed.

Parameters can be passed to a subrou-
tine as “data” bytes immediately following
the CALL. Let’s define the two bytes af-
ter CALL OUTSTR as the address of the
string. The code shown in Figure 4 then
picks up this pointer, saving us a byte per
call. The penalty is in making OUTSTR 4
bytes longer and 38 T-states/loop slower;
thus it doesn’t pay until we use it 5 or
more times.

We also had to rethink our choice of
registers. If we tried to use HL or IX as
the string pointer, OUTSTR would have
been larger and slower (try it yourself).
This demonstrates the consequences of
inappropriate register choices.

The more parameters that must be
passed, the more efficient this technique
becomes. A further refinement is to put
the string itself immediately after CALL
as shown in Figure 5. This saves an addi-
tional two bytes per call, and shortens
OUTSTR by 6 bytes.

Constants and Variables

Constants and variables are part of
every program. Constants are usually
embedded within the program itself, as
“immediate” bytes. Variables on the
other hand are usually separated,
grouped into a common region perhaps at
the end of the program. This makes sense
for programs in ROM, where the vari-
ables obviously must be stored elsewhere.
But it is not a requirement for programs
in RAM.

If your program executes from RAM,
performance can be improved by treating
variables as in-line constants; storage for
the variable is in the last byte (or two) of
an immediate instruction. The example in
Figure 6 is a routine that creates a new
stack, toggles a variabie FLAG between
two states, and then restores the original
stack.

The LD A,(FLAG) instruction takes
13 T-states and 4 bytes of RAM (3 for the
instruction, 1 to store FLAG). It can be
replaced by LD A,Y’ where “Y’ is the ini-
tial value of the variable FLAG, the 2nd
byte of the instruction (see Figure 7).
Speed and memory are improved 2:1,t0 7
T-states and 2 bytes respectively.

It works for 16-bit variables as well.
Replace LD SP,(STACK) with LD SP,0
where 0 is a placeholder for the 2-byte
variable STACK. This saves 3 bytes and
10 T-states.

There is another advantage to this
technique--versatility. Any immediate-
mode instruction can have variable data;
loads, math, compares, logical, even
jumps and calls. Try changing our first
example so a variable OUTDEYV selects
the output device; console or printer.
Now see how simple it is if OUTDEYV is
the 2nd byte of the LD C,CONOUT in-
struction.

It even creates new instructions. For
instance, the Z80’s indexed instructions
don’t allow a variable offset. This makes it
awkward to load the “n”th byte of a table,
where we would like LD A,(IX+b) where
“b” is a variable. But it can be done if the
variable offset is stored in the last byte of
the indexed instruction itself.

Storing variables in the address field of

call outstr
db ‘message’, 0

outstr: pop de

1d a, (de)
inc de

push de

or a

ret z

14 e,a

1d ¢, conout
call bdos

jr outstr

toggle: 1ld {stack) ,sp
1d sp,mystack
1d a, (flag)
cp ‘Y’
1d a,'N’
jr z,8etno
1d a,'y’

setno: 1d (flag),a
1d sp, (stack)
ret

stack: dw 0

flag: db 'Y

FLAG, then restores the stack.

toggle: 1d (stack+1l},sp

1d sp,mystack
flag: 1d a,'y’

cp 'Y

1d a,'N’

jr z,8etno

1d a,'y"'
setno: 1ld (flag+l),a
stack: 1d sp,0

ret

which execute in RAM.

toggle: 1ld (stack+1),sp

id sp,mystack
flag: 1d a,'y’

xor 'Y'-'N*

1d (flag+l),a
stack: 1d sp, 0

ret

~e we

Ne me N ne we we

~

Figure 5: Placing the string immediately after CALL.

“e No N % Ne Ne e e e

~ o~

Fiqure 6: A routine which creates a new stack, toggles a variable

~

~e we we e

~e e we we

Figqure 7: Treating variables as in-line constants for programs

D R T

Fiqure 8: Using XOR to toggle a variable.

output message
which immediately follows

get pointer to message

get next character

advance to next

& save as return address

if char=0, all done
pointer is return addr

else output char to console

& repeat

save old stack pointer
setup my stack
get Yes/No flag
if »y-,
set it to "N*"
else *N",
set it to *"Y"
save new state
restore stack pointer

old stack pointer
value of flag

save old stack pointer
setup my stack
get Y/N flag (byte 2=var)
if y=,
set it to "N"
else *"N*,
set it to "Y"
save new state
restore stack (byte 2,3=var)

save old stack pointer
setup my stack

get Y/N flag (byte 2=var)
toggle "Y" <-> "N"

save new state

restore stack (byte 2,3=var)

a jump or call instruction can do some
weird and wonderful things. There is no
faster way to perform a conditional
branch based on a variable. But remem-
ber you are treading on the thin ice of
self-modifying code; debugging and relo-
cation become much more difficult, and
you must insure that the variable
NEVER has an unexpected value. Also,
in microprocessors with instruction caches
(fast memory containing copies of the
contents of regular memory), there can
be problems if the cache data are not up-
dated.

I put a LABEL at each instruction
with an immediate variable, then use
LABEL+1 for all references to it. This
serves as a reminder that something odd
is going on. Be sure to document what
you’re doing, or you’ll drive some poor
soul (probably yourself) batty.

Exclusive OR

The XOR operator is a powerful tool
for manipulating data. Since anything
XOR’d with itself is 0, use XOR A in-
stead of LD A,0. To toggle a variable be-

The Computer Journal / #39

tween two values, XOR it with the differ-
ence between the two values. Our last ex-
ample can be performed much more effi-
ciently by using XOR as shown in Figure
8

XOR climinated the jump, for a 2:1
improvement in size and speed. This illus-
trates a generally useful rule. Almost any
permutation can be performed faster,
without jumps, by XOR and the other
math and logical operators. Consider the
routine shown in Figure 9 to convert the
ASCII character in A to uppercase: it’s
both shorter and faster than the tradi-
tional method using jumps.

Data Compaction

Programs frequently include large
blocks of text, data tables, and other non-
program data. Careful organization of
such information can produce large sav-
ings in memory and speed of execution.

ASCII is a 7-bit code. The 8th bit of
each byte is either unused or just marks
the end of a string. You can bit-pack 8
characters into 7 bytes with a suitable rou-
tine. If upper case alone is sufficient, 6
bits are enough. For dedicated applica-
tions, don’t overlook older but more
memory-efficient codes like Baudot (5
bits), EBCD (4 bits), or even Interna-
tional Morse (2-10 bits, with frequent
characters the shortest).

If your text is destined for a CRT or
printer, it may be heavy on control charac-
ters and ESC sequences. I've found the
following algorithm useful. Bytes whose
msb=0 are normal ASCII characters:
output as-is. Printable characters whose
msb=1 are preceeded by ESC, so
“A”+80h=Cl1h sends “ESC A”. Control
codes whose msb=1 are a “repeat” prefix
to output the next byte between 2 and 32
times. For example, linefeed+80h=8Ah
repeats the next character 11 times. The
value 80h, which otherwise would be “re-
peat once”, is reserved as the marker for
the end of the string.

Programs can be compacted, too. One
technique is to write your program in an
intermediate language (IL) better suited
to the task at hand. It might be a high-
level language, the instruction set of an-
other CPU, or a unique creation specifi-
cally for the job at hand. The rest of your
program is then an interpreter to execute
this language. Tom Pittman’s Tiny BA-
SIC is an excellent example of this tech-
nique. His intermediate language imple-
mented BASIC in just 384 bytes; the IL
interpreter in turn took about 2K.

Another approach is threaded code,

The Computer Journal / #39

convert: 1d b,a

;
sub ‘a’ ;
cp 'z'-'a'+l ;
sbe a,a ;
and ‘a‘-'A’ ;
xor b ;

main: call getname
call openfile
call readfile
call expandtabs
call writefile
call closefile
ret

return: 1ld

return: pop hl
ret

~

~

save a copy of the char in B

if char is lowercase (a thru z),
then carry=1, else carry=0
£ill A with carry
difference between upper/lower
convert to uppercase

Figure 9: Converting ASCII char to uppercase with XOR.

Figure 10: Example of threaded code which uses lots of CALLs.

mains 1d (stack),sp ; save stack pointer
1d sp, first ; point it to first address in the list
ret ; and go execute it
first: dw openfile
dw readfile
dw expandtabs
dw writefile
dw closefile
dw return ; end of list

sp, (stack) ; restore stack pointer
ret ; and return (to MAIN's caller)

Figure 11: Eliminating the CALL opcodes.

mains call next
dw openfile
dw readfile
dw expandtabs
dw writefile
dw closefile
dw return ; end of list
next: pop ix ; make IX our next-subroutine pointer
nextl: 1d hl,nextl ; push addrese so RET comes back here
push hl
1d 1, (ix+0) ; get address to “"call”
inc ix ; low byte
1d h, (ix+0) ; high byte
inc ix ; point IX to addr for next time
ip (hl) ; call address

end of list; discard NEXT addr
and return to MAIN's caller

Figure 12: Indirectly threaded code linked by NEXT.

made popular by the Forth language. A
tight, well-structured program will proba-
bly use lots of CALLs. At the highest lev-
els, the code may in fact be nothing but
long sequences of CALLS (see Figure 10).

Every 3rd byte is a CALL; large pro-
grams will have 1000s of them. So let’s
eliminate the CALL opcodes, making our
program just a list of addresses (see Fig-
ure 11.)

The stack pointer is pointed to the ad-
dress of the first subroutine in the list to
exccute. RET then loads this address into
the program counter and advances the
stack pointer to the next address. Since
each subroutine also ends with a RET, it
automatically jumps directly to the next

routine in the list to be executed. This is
called directly threaded code.

RETURN is always the last subrou-
tine in a list. It restores the stack pointer
and returns to the caller of MAIN.

Directly threaded code can cut pro-
gram size up to 30%, while actually in-
creasing execution speed. However, it has
some rather drastic limitations. During
execution of the machine-code subrou-
tines in the address list, the Z80’s one and
only stack pointer is tied up as an address
pointer. That means the stack can’t be
used; no interrupts, calls, pushes, or pops
are allowed without first switching to a
local stack.

The solution to this is called indirectly
threaded code, made famous (or infa-
mous) by the Forth language. Rather
than have each subroutine directly chain
into the next, they are linked by a tiny
interpreter, called NEXT (see Figure 12).

Now IX is our pointer into the address
list; it points to the next subroutine to be

. executed. Subroutines can use the stack

normally within, but must preserve IX
and can’t pass parameters in HL. When
they exit via RET, it returns them to
NEXTI.

Though the example executes the ad-

"dress list as straight-line code, subroutines
- can be written to perform jumps and calls

via IX as well. NEXT can provide special
handling for commonly-used routines as
well; words with the high byte=0 could
jump IX by a relative offset if A=0. If
there are less than 256 subroutines, each
address can be replaced by a single byte,
which NEXT converts into an address via
a lookup table.

Indirectly threaded code can reduce
size up to 2:1 in return for a similar loss in
execution speed. The decrease in pro-
gram size is often remarkable. I learned
this in 1975 designing a sound-level do-
simeter. This cigarette-pack sized gadget
rode around in a shirt pocket all day, log-
ging the noise a person was exposed to. It
then did various statistical computations
to report the high, low, mean, and RMS
noise levels versus time.

In those dark ages, a BIG memory

" chip was 256x4. Cost, power, and size

forced us into an RCA 1802 CMOS
microprocessor, with just 512 bytes of
program memory (bytes, not K!). Try as
we might, we couldn’t do it. In despera-
tion, we tried Charlie Moore’s Forth. In-
credibly, it bettered even our heavily opti-
mized code by 30%!

Of course, very little of Forth itself
wound up in the final product; it just
showed us the way. Once you know HOW
it’s done, you can apply the same tech-
niques to any assembly-language program
without becoming a born-again Forth
zealot.

Shortcuts

Here are some “quickies” that didn’t
fit in elsewhere. Keep in mind what is ac-
tually in all the registers as you program.
Do you really need to clear carry, or is it
already cleared as the result of a previous
operation? Before you load a register, are
you sure it’s necessary? Perhaps it’s al-
ready there, or sitting in another register.

clearl: 14 a,l

db 21h
clear80: 1d a,80
db 26h

clear256: xor a

~e e we wn e

loop: 1d (hl),0
inc hl
djnz loop
ret

Fiqure 13: Simulating a skip.

clear 1 byte
skip next two bytes (21h = 1d hl,nn)
clear 80 bytes (and "nn" for 1d hl,nn)
skip next byte (26h = 1ld h,n)
clear 256 bytes (and "n" for 1d h,n)

clear: 1d b,a ; clear #bytes in A to zero
1d hl,buffer ; beginning at buffer

Many routines return “leftovers” that
can be very useful, such as HL, DE, and
BC=0 after a block move. Perhaps an
INC or DEC will produce the value you
want. Variables can be grouped so you
needn’t reload the entire address for each.
If the high byte of a register is correct, just
load the lower half.

Keep an index register pointed to your
frequently-used variables. This makes
them easier to access (up to 256 bytes)
and opens the door to memory-(rather
than register-) oriented manipulations.
The indexed instructions are slower and
less memory-efficient, but the versatility
sometimes makes up for it (store an im-
mediate byte to memory, load/save to
memory from registers other than A,
etc.).

The Z80’s bit test/set/reset instruc-
tions add considerable versatility if you
define your flags as bits rather than bytes.
Bit flags can be accessed in any register,
or even directly in memory, without load-
ing them into a register.

If the last two instructions of a subrou-
tine are CALL FOO and RET, you could
just as well end with JP FOO and let FOO
do the return for you. If the entry point of
FOQO is at the top, even the JP is unneces-
sary; you can locate FOO immediately af-
ter and “fall in” to it.

If you have a large number of jumps to
a particular label (like the start of your
MAIN program), it may be more efficient
to push the address of MAIN onto the
stack at the top of the routine. Each JP
MAIN can then be replaced by a 1-byte
RET.

SKIP instructions are a short, fast way
to jump a fixed distance. The Z80 has no
skips, but you can simulate a 1- or 2-byte
skip with a 2- or 3-byte do-nothing in-
struction: JR or JP on a condition that is
never true, for instance. If the flags aren’t
in a known state, load to an unused regis-

ter (see Figure 13).

The stack pointer is the Z80’s only
auto-increment/decrement register. This
makes it uniquely suitable for fast block
operations. For instance, the fastest way
to clear a block of RAM is to make it the
stack and push the desired data. At 11 T-
states per 2 bytes, it is 3 times faster than
two LDD instructions. Remember to dis-
able interrupts or to allow for them; if an
interrupt routine pushes onto the stack
while you are using it for this special pur-
pose, the results may not be what you in-
tended.

That is all for this time. Next time we
will continue the discussion with a look at
the interplay between software and hard-
ware. @

The Computer Journal / #39

Computer Aided Publishing
The Hewlett Packard LaserJet

by Art Carlson

~ Computer historians will note three
products which had tremendous impact
on the microcomputer industry. The first
is the Apple II which demonstrated what
microcomputers could do. The second is
VisiCalc, the first electronic spreadsheet,
which created a demand for desktop com-
puters in business. The third is the Hewl-
ett-Packard LaserJet Printer which
changed business printing and laid the
ground work for DTP (Desk Top Pub-
lishing).

Before the laser, hardcopy output was
limited to high speed lineprinters which
produced poor quality printing suitable
for mailing labels, slow daisy wheel print-
ers which produced high quality printing
for letters, and the ubiquitous dot matrix
printer with different models providing a
wide range of speeds and poor to moder-
ate quality. None of these could produce
the economical high quality camera ready
copy which publishers needed--their only
recourse was expensive time consuming
typesetting services for the straight text
type matter. Graphics required skilled
pen and ink artists, which was too expen-
sive for most publications.

The Hewlett-Packard LaserJet

The LaserJet, which was introduced in
1984, has revolutionized business and
publishing practices, and the transition
will accelerate as more people understand
how to incorporate laser printers into
their operations.

Although DTP is receiving most of the
press coverage, it is the hidden business
applications which account for the major-
ity of the sales--and also the majority of
the programming job opportunities. Inci-
dentally, I don’t know who coined the
term Desk Top Publishing, but it should
really be Desk Top Typesetting. DTP does
offer the solution to a very vexing prob-
lem, but it only addresses a portion of the
total publishing effort.

The Computer Journal / Issue #39

The LaserJet II series can print on
various sizes including 8.5 x 11, 8.5 x 14,
and number 10 business size envelopes. It
can use plain paper (including a super-
smooth grade for reproduction master
copy), transparency, and label stock.

The Hewlett-Packard PCL printers
use fonts which are already in bit map
form, and there are many type options.
The LaserJet II comes with Courier, Cou-
rier Bold, and Line_Printer in ROM for
both portrait and landscape (portrait is
across the narrow dimension and land-
scape is across the wide dimension).
There are two slots for ROM cartridges
for additional fonts with a wide selection
of cartridges available from H-P and
other vendors. Soft fonts which can be
uploaded into RAM offer an almost infi-
nite variety, limited only by the available
memory in the printer.

These fonts are all in bit map form and
can only be used exactly as they exist. Any
scaling or other modifications must be
performed before they are loaded into the
printer.

Graphics are also sent in bit map form,
and can use a lot of memory. The ROMs
include graphic routines for drawing filled
rectangles, and the most efficient way to
draw horizontal and vertical lines is using
graphics rules (solid-filled rectangular ar-
€as).

Tasks which must be performed re-
peatedly can be incorporated in a macro
which is sent to the printer once and then
initiated with a single command. This can
greatly reduce the transmission time for
business applications.

The LaserJet can produce high quality
text, forms, and graphics. While the hard-
ware exists, there is still a lot of program-
ming effort required in order to fully util-
ize the LaserJet’s capabilities.

Programming the LaserJet

The LaserJet is programmed using
H-P’s PCL (Printer Control Language).
Printing simple text files is easy. In fact
you don’t have to program at all in order
to print letters using the internal ROM
fonts or cartridge fonts. All you have to do
is to use the control panel to select the
desired font and then send the printer a
stream of ASCII text. For example, when
I want to see a hex/ASCII dump of a file
for debugging, I use the control panel to
select the line_printer font. I then load the
file into DDT or DEBUG and enter a
Control P so that the output is directed to
the printer. This works on both CP/M and
MS-DOS computers. Printing manu-
scripts and letters is just as easy using vari-
ous runoff programs and editors which
don’t even know that they are talking to a
laser.

When used this way, the LaserJet is
merely acting as a high-speed high-quality
printer. It’s only using a fraction of its ca-
pabilities, but thousands are being used
just this way by lawyers, CPAS, and busi-
nesses to produce correspondence, forms,
and reports. While cranking out boiler-
plate copy using a single fixed width font is
easy, the extra effort required to use pro-
portionally spaced fonts in various sizes is
well worth while.

The biggest problem facing program-
mers and business people is understand-
ing the concept of proportionally spaced
type. We are so accustomed to typewrit-
ers and computer screens with fixed width
characters that it is very difficult to accept
the fact that every character in a font can
be a different width. And that the same
character in a different point size is a dif-
ferent width. And even that the same
character in the same point size may have
different widths in different faces. And
that the space has an undefined width
which can vary between certain limits in
order to justify a line (that’s why the space

is never used for indenting or column po-
sitioning with proportional fonts). I spend
alot of time explaining and demonstrating
proportional spacing, and then the people
still count characters and use multiple
spaces--it’s very difficult to change such
ingrained habits.

Working with proportional fonts is not
difficult, it’s just different. The first step is
to forget about talking about line lengths
in characters. Think about them in inches
or millimeters or picas, or any measure of
length. Next convert the line length to
units for the laser printer. Then deter-
mine the set width for the character you
are using and subtract that from the total
line length to see how much room is left.
It’'s simple. Tedious, but simple. You
don’t even need a computer to do it, all
you need is the width scheme for the font.
How do you get the width scheme? The
width of each character is included in the
H-P font files, and I’ll show how to extract
and use this information further on in this
series. The Digi-Font program, which I
highly recommend, includes an option to
print a width chart.

PCL commands are sent to the printer
using a series of escape sequences. The
four lines of code in Figure 1 printa3x 5
inch black rectangle. The first line posi-
tions the dot position at 300,400. The sec-
ond line sets the rectangle width to 900
dots (3 inches). The third line sets the rec-
tangle height to 1500 dots (5 inches). The
last line prints the rectangle with solid fill.
The code is shown in human readable
form, but is sent to the printer with no
carriage returns or line feeds, and with the
1B hex escape character where <ESC> is
shown. This can be sent to the LaserJet
from any computer with an RS-232 or
Centronics port.

<ESC>*p300x400Y
<ESC>*c900A
<ESC>*c1500B
<ESC>*c0P

Figure 1: PCL commands to set 3
X 5 black box.

The format in Figure 1 is much easier
to read than a DEBUG dump, so [wrote
the short C program in Figure 2 to con-
vert PCL files to human readable form.
This translates the escape character to
<ESC> and places it at the beginning of
a new line. My LaserJet configuration re-
quired the \r return code, but other
printer configurations may not require it--
my Epson MX-80 doesn’t because I have
it set to add the return to a newline. This

10

tinclude <stdio.h>
int c;
FILE *ifd;

main(argc,argv)
char **argv;

{
char *fname;
fname = argv(l];

{

exit();

}
while ((c=fgetc(ifd)} !=EOF)
{

else
fprintf (stdprn,“sc”,c);

/* SETESC.C -- A program to print the 1B hex escape character code
as <ESC> for illustrating PCL code examples.
VERSION 1.0 5/3/89 Compiled with Turbo C V2.0 */

if ((ifd = fopen(fname, *"r*)) == NULL)

printf("Can't open file %s\n",fname);

if(c == 0Oxlb) /* Escape Character */

fprintf(stdprn, “\r\n<EsSC>");

Figure 2: A program to convert PCL code to human readable form.

is NOT an example of good C coding
practice. It’s just a short routine which I
wrote late at night when I was anxious to
study some PCL routines. I need to write
a program to convert human readable
commented source PCL files to execut-
able run files.

Why program in PCL when there are
sO many programs already available?
There are a number of reasons. For one,
it is not efficient (or even possible) to do
everything through wordprocessor or
page preparation programs. Another is
that you may not be abie to locate pro-
grams for your machine (such as CP/M,
Hawthorne’s 68000, or the NS320XX).
Another is the high cost of programs
which do more than you need. Lastly, pro-
grammers have to learn PCL in order to
write the programs used by those who
can’t program. We should also mention
the challenge of having to do it in order to
understand what is going on.

We must - learn about lasers because
they will very rapidly replace daisy wheel
and dot matrix printers for everything ex-
cept a few specialized applications such as
Cheshire mailing labels and multi-part
POS (Point Of Sale) forms. Even the use
of mailing labeis will drop because people
are using ink jet printers to print the ad-
dresses directly on the envelope.

I am using PageMaker 3.0, and the
more I use it, the more [like it. I wouldn’t
even consider writing a program to dupli-
cate PageMaker. But, I have some re-
quirements which existing programs don’t

fill. So, I'm starting on a long term laser
programming project.

Soft Fonts--The Potentials and
the Problems

You have to use soft fonts in order to
realize the Laserjet’s real potential, but
managing soft fonts presents significant
problems for most users.

A soft font is contained in a file which
consists of a header plus bit mapped data
for each character in the font for one style
and one size. A document which uses
Helvetica in nine point regular, nine point
bold, and ten point bold, will require three
font files. The required font files can be
purchased on disk, or can be generated
from outline data. I prefer to generate the
fonts using Digi-Font’s program for many
reasons which will become apparent as we
get into actual application examples.

Soft fonts can contain special charac-
ters in addition to the alpha/numeric and
punctuation characters in the standard
ASCII set. These extended character sets,
called symbot sets, contain things such as
copyright and trademark characters, bul-
lets and ballot boxes, fractions, accented
characters, and many other special char-
acters which typographers are accus-
tomed to (printers call special ornamental
characters which are not in the standard
sort dingbats). There are many different
symbol sets available, and there is often a
problem because no one sct contains all
the symbols for an application. I'll show
how to customize symbol sets and special

The Computer Journal / Issue #39

characters in a future article, but see the
Digi-Font review in this issue to sce how
easily it can be done with their program.

The problem with soft fonts is that
they take up space, both on the computer
disk and in the printer’s memory. It also
takes time to upload them to the printer.
Since the fonts are bit mapped (there is
one bit set for every dot which prints plus
" an unset bit for every dot which does not
print) and there are 300 dots per inch, soft
font files can get very large. A nine point
Palatino font with a small symbol set is
12.1 K. The same font in 48 point is 182.6
K. The ability to generate fonts containing

_ only the required characters and symbols
is very important in order to control the
font file size. It is also important to be
able to easily generate fonts in the re-
quired size and then discard them at the
end of the job--otherwise you end up with
many megabytes of seldom used fonts.
The fonts can always be re-generated if
needed.

The soft fonts can be uploaded to the
LaserJet as either permanent fonts or as
temporary fonts. Permanent fonts remain
until the printer is turned off or they are
deleted under program control. Tempo-
rary fonts are removed whenever the
printer is reset. The printer does not com-
municate back to the computer, so there
is no way to find out what fonts are
loaded, therefore most software pro-
grams reset the printer at the beginning
and end of every job to remove any tem-
porary fonts. They then reload the fonts
they need--even if they are the fonts which
were just removed.

The LaserJet has acquired an unde-
served reputation for slowness because of
the constant reloading of soft fonts, and
font management is one of the aspects we
will cover in this series. For my own uses, I
am planning on setting up a system as a
server (even a cheap CP/M or 8088 one
will do) for font management. All output
for the covered applications will go
through the server which will keep track
of which fonts are already in the printer
and only upload fonts as required. This
could also be accomplished as a separate
task on a true multitasking system.

LaserJet Applications

The LaserJet offers a unique combina-
tion of quality, speed, resolution, versatil-
ity, and affordability.

It can crank out draft copies of manu-
scripts much faster than a dot matrix
printer--and they’re much easier to read
too!. Then it can set the document in a

The Computer Journal / Issue #39

wide selection of proportionally spaced
fonts in various sizes from 6 to 720 points.
The file size for a font with only the one
character “A” in Palatino 720 points is
565 K! The character is also 10 inches
high, so only one character will fit on an
8.5 x 11 inch sheet. Large type sizes must
be used with care because of the tremen-
daqus file sizes, but business and publish-
ing don’t require many large characters.
When they are needed, partial character
sets can be generated and loaded directly
to the printer for one time use.

Most drawing and CAD (Computer
Aided Drafting) programs, such as Ge-
neric CADD which I use, can generate bit
mapped output for the LaserJet. Another
good program is H-P’s Draw Gallery.
These programs perform sizing and scal-
ing before they generate the bit map be-
cause you get a bad case of the jaggies if
the scaling is done from a bit map. There
are also routines which convert the output
from Borland’s Turbo C functions to Las-
erJet output.

Businesses are using LaserJets to out-
put order forms and invoices which in-
clude drawings of the items and bar codes
for order processing. The use of bar codes
is expanding very rapidly, and it takes a
laser printer to provide sufficient resolu-
tion for reliable scanning. LaserJets are
also used for manuals, catalogs, literature,
stock bin labels (with bar codes), forms,
etc.

The alternative to the LaserJet is the
PostScript devices which contain scalable
fonts. This avoids much of the problem
with PCL bit mapped fonts, but the print-
ers cost about $2,000 more because of the
cost of the PostScript interpreter which is
contained in the printer. PostScript is at-
tractive for graphics work using many dif-
ferent type styles and sizes with rotated
and scaled images in a single document--a
poster is a good example of this. But, I
consider this graphic artwork. My main
concern is text with some line drawing il-
lustrations such as flow charts, and I pre-
fer the LaserJet. Most of the high volume
business use is also concerned with text
and simple line drawings.

I consider the LaserJet as a replace-
ment for typewriters, daisywheel printers,
dot matrix printers, and phototypesetters,
plus the kind of drawing made with a T-
square. I consider PostScript as a replace-
ment for the artist’s pen and brush. It isn’t
really that cut-and-dried, there is a lot of
overlap, and any job can probably be
forced from either system. But, they each
have their area of optimum economic

performance.

The laser market is changing rapidly.
There are packages which enable the
MAC to output to the LaserJet, and there
are packages for the PC which translate
PostScript to PCL. It is no longer an ei-
ther-or choice. During the next few years
laser devices will probably evolve to the
point where they all accept one standard

language. Till then, I'll stick with PCL.

Where Do We Go From Here?

This article, the first in a series, is a
brief introduction to the LaserJet. In fu-
ture articles we will demonstrate the PCL
language, develop runoff programs in-
cluding word wrap and justification of
proportionally spaced type, and develop
graphic routines, plus forms manage-
ment. We will also examine the LaserJet
font file structure, show how to extract
(and how to change) the width values,
how to create custom fonts and how to
manage the font files, and how to create
composite characters and special symbol
sets.

We'll also cover typography funda-
mentals, unusual uses and applications,
and hardware and software enhance-
ments for the LaserJet.

This is a lot of ground to cover, and
your feedback is welcome. Let us know
about your questions, problems, suc-
cesses and failures with laser printers. @

1

The Z-System Corner

by Jay Sage

For this issue I will discuss some
unique new capabilities made possible by
NZCOM that have already proved their
value and that I hope will be exploited toa
much greater extent in the future. I origi-

"nally had several other issues on my
agenda, but Lee A. Hart sent me such an
interesting article that I wanted to leave
plenty of room for it.

System Enhancements Using
NZCOM

I'm afraid that many people think of
NZCOM as just a way for unskilled users
to get Z-System running on their comput-
ers. It’s true that NZCOM accomplishes
that, but, as I have asserted often before,
NZCOM does much more than that. It
offers possibilities that a manually in-
stalled Z-System cannot achieve. 1 would
like to describe one of them here and will
do sofirst in the context of a problem that
arose with the new ZSDOS and ZDDOS
disk operating systems on some comput-
ers.

~ Because CP/M was created originally
for the 8080 microprocessor, a number of
BIOS impiementors (the BIOS, or Basic
Input/Output System, is the hardware-
dependent part of CP/M) felt that they
could make free use of the additional reg-
isters introduced with the Z80 chip. These
registers included two index registers,
called IX and IY, and a duplicate set of
the standard registers denoted with
primes on the names (e.g., B’ or HL").

This was perhaps excusable at the

time, but it is poor programming practice
for an operating system to change any-
thing other than what is explicitly indi-
cated in the specifications. Most BIOS
writers who have used the Zilog registers
have been careful to restore the original
values before exit from the BIOS rou-
tines. Unfortunately, a few BIOSes fail to
do that. Among them are the following:
Epson QX10, Zorba, Televideo 803 and
TPC-1, Oneac On, and the Osborne Ex-
ecutive. The Bondwell is on the suspect
list, and there are probably others we
don’t know about yet.

The (mis)use of these registers poses
no problem for programs written to run
on the 8080, but today we are rapidly
moving beyond the limitations of the 8080
and making extensive use of the Z80 reg-
isters to pack more power into operating
system components and application pro-
grams. Today, the Z-System, true to its
name, is intended to run only on the Z80
or upwardly compatible processors like
the HD64180, Z180, or Z280.

Several users who purchased ZDOS
(that is ZSDOS and ZDDOS) found that
it would not work properly on their com-
puters. An investigation turned up the
fact that the BIOSes in those computers
were modifying the index registers. This
also explained why those same users had
been experiencing strange problems with
JetLDR, Bridger Mitchell’s superb Z-Sys-
tem module loader. It also explained
some mysterious problems 1 was having
with a number of programs (for example,

Jay Sage has been an avid ZCFPR proponent since the very first version appeared. He is
best known as the author of the latest versions 3.3 and 3.4 of the ZCPR3 command proces-
sor and for his ARUNZ alias processor and ZFILER file maintenance shell.

When Echelon announced its plan to set up a network of remote access computer systems
to support ZCPR3, Jay volunteered immediately. He has been running Z-Node #3 for more
than five years and can be reached there electronically at 617-965-7259 (on PC-Pursuit). He
can also be reached by voice at 617-965-3552 (between 11pm and midnight is a good time to
find him at home) or by mail at 1435 Centre St., Newton, MA 02159. Finally, Jay recently
became the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as

JAY.SAGE via GEnie mail.

In real life, Jay is a physicist at MIT, where he tries to invent devices and circuits that use
analog computation to solve problems in signal, image, and information processing.

12

EDITNDR) on my Televideo 803! The
question was what to do about the prob-
lem.

In the ancient days, when computers
always came with the source to their
BIOS and their owners were always inti-
mately familiar with the procedures for
rebuilding their operating systems, the so-
lution would have been to rewrite the
BIOS with the proper PUSH IX and POP
IX instructions to preserve the index reg-
ister values. But what could we do today
for nonprogrammers and those without
BIOS source code? NZCOM provided
the answer quite nicely!

As I explained in a column long ago,
NZCOM works by creating what I call a
virtual BIOS (T’ll call it VBIOS) lower in
memory in order to open up space for the
Z-System modules between it and the real
BIOS (often called the custom BIOS or
CBIOS). The source for this virtual BIOS
is available. Except for the warmboot
code and some minor complications for
IOP (input/output processor) support,
the standard NZCOM VBIOS moduie
just vectors calis that come to it up to the
real BIOS.

But no one says this is all it is allowed
to do. ZDOS authors Cam Cotrill and
Hal Bower found it quite easy to sur-
round the vectors with code to save and
restore registers. First they released
ZSNZBI11.LBR, which contained the
source and ZRL file (loadable by
NZCOM) for a VBIOS that preserved
the IX and IY registers for all disk func-
tion calls. Later they discovered that some
of the machines changed the index regis-
ters even for console I/O function calls,
and others changed the alternate regis-
ters. They then wrote ZSNZBI12.1 BR,
whose VBIOS preserves all the registers
for all BIOS functions. '

Instead of having the virtual BIOS
routines jump directly to the real BIOS,
they jump to an intermediate entry point.
For example, the list-status vector in the
jump table has a JP ILSTST (intermedi-
ate list status), and the code at ILSTST is:

The Computer Journal / #39

ILSTST: LD A, 45
JR DOBIOS

The offset for the BIOS function is
placed in the A register and then control
is transferred to a general BIOS~alling
routine shown in Table 1 that implements
the register protection. The routine JPHL
referenced there contains oni, the code
line JP (HL), which vectors thic CPU off
" to the BIOS with a returc to the
DOBIOS code.

To use this replacement VBIOS, you
have to run MKZCM and create an
NZCOM system with 4 records allocated
for the BIOS instead of the standard 2.

- Because the BIOS must start on a page
rather than just a record boundary,
MKZCM will sometimes make automatic
adjustments to the BIOS size. Therefore,
you should specify changes in MKZCM
starting with the higher-numbered mod-
ules; the adjustment in the BIOS alloca-
tion should be made last. If an attempt to
enter a value of 4 results in MKZCM us-
ing 5, then you could go back (if you don’t
like wasting memory) and make one of
the other moduies (such as the NDR) one
record larger and then respecify a 4-rec-
ord BIOS.

There are many other ways that
NZCOM can be used to introduce system
enhancements without having to make
changes in the real BIOS. As an example,
we will show how to add support for the
drive vector in environment descriptors of
type 80H and above (implemented with

. NZCOM and Z3PLUS). The drive vector
is a 16-bit value stored as a word begin-
ning at offset 34H in the environment de-
scriptor. It specifies which disk drives are
actually implemented on a system. The
lowest order bit in the word is for drive A
and the highest for drive P. A zero in a bit
position indicates that the corresponding
drive is not available. For example, on my
SB180 the bytes at addresses ENV +34H
and ENV+35H were 7FH and 00H, re-
spectively. Thus the word value is 007FH
or 0000,0000,0111,1111 binary, indicating
that I had drives A, B,C, D, E, F, and G.
When the hard disk E partition developed
a problem that made it unusable, I
changed the 7FH value to 6FH, thereby
disabling drive E. You can display the
drive vector using menu selection 3 in the
SHOW program (ZSHOW for
Z3PLUS).

The ZCPR34 command processor
knows about the drive vector and will not
allow command references to unsup-
ported drives. But what about programs
that you run? Unfortunately, the BIOS

The Computer Journal / #39

L,A

(DEP) ,DE
(BCP},BC

(IYREG), IY
AF,AF'

AF,AF*
JPHL

HL, (HLP) ;
DE, (DEP)
BC, (BCP)
IX, (IXREG)
EX AF,AF'

POP AF

EX AF ,AF*

RET

..registers

; Register save area

BCP: DEFS 2 ; BC'

DEP: DEFS 2 ; DE*

HLP: DEFS 2 ; HL'

IXREG: DEFS 2 ; IX

IYREG: DEFS 2 ; IY
END

registers across BIOS calls in

; Modify ISELDK as follows and place it
; the data area for register storage.

drive vector at the BIOS level.

HL,CBIOS ; Start with address of real BIOS

AL ; Add offset in A (never a

; ..carry since on page boundary)
; Swap to alternate registers
(HLP) ,BL ; Save them all in memory

(IXREG),IX ; Save index registers, too
; Back to regular registers
; Swap to alternate PSW
AF ; Save it on stack
; Back to original PSW

; Actually call the BIOS!
; Restore alternate and index

; Alternate PSW, too

Table 1. Code from ZSNZBI12.Z80 that preserves all index and alternate

; Add DRVEC definition in the ENV common

COMMOR /_ENV_/
Z3ENV:
DRVEC EQU Z3ENV+34H ; Drive vector
CCP EQU Z3ENV+3FH
DOs EQU Z3ENV+42H

ISELDK: LD HL, (DRVEC) ; Get drive vector
LD A,1l6 ; Subtract requested drive
SUB C ; .. from 16
LD B,A ; .. and put into B
ISELDK1:
ADD HL,HL ; Move bits left into carry
DJNZ ISELDK1 ; Loop l6-<drive> times
LD HL,0 ; BIOS return code for invalid drive
RET NC ; Return if drive vector bit not set
LD A,27 ; Otherwise, use CBIOS function
JR DOBIOS ; .. at offset 27

Table 2. Code added to virtual BIOS to support the environment

NZCOM.

after the DOBIOS code and before

generally knows only which drives are po-
tentially implemented, and it may try to
access a nonexistent drive. When ‘smart’
BIOSes encounter this problem, they of-
ten prompt the user as to what to do next.
This is fine if you are sitting at the console
and can take appropriate action to re-
cover, but if the system is being run re-
motely, there is generally no way for the
remote user to recover. In fact, because

the ‘smart’ BIOS uses direct hardware
calls to display the “Abort, Retry, Ig-
nore?” message rather than calls through
the BIOS vector table, the remote user
does not even see the message and just
thinks the system has crashed. My Z-
Node got hung once that way when I for-
got to put a diskette back into a floppy
drive. A caller attempted to access it, and
when I got home, the BIOS was dutifully

13

beeping at me and waiting for me to tell it
what to do.

My first stab at writing a VBIOS that
observes the drive vector restrictions is
shown in Table 2. Now that I have read
Lee Hart’s column, I am sure that this
code can be made shorter, faster, or both!
But I will leave that as an exercise for the
reader. (I already see one place where I
could save a byte.)

The listing assumes you are starting
with the ZSNZBIO described earlier. Just
add the extra equate for DRVEC under
the / ENV_/ common block and replace
- the simple ISELDK (intermediate select
disk) code with the slightly more complex
version shown in the Table. T put this on
my Televideo, and the results were most
pleasant. Now when I attempt to access a
nonexistent drive, the system does not
force a direct-CBIOS warmboot that
drops me out of NZCOM.

These two examples of system en-
hancements by no means exhaust the pos-
sibilities. One can implement all kinds of
additional features and drivers right in the
NZCOM VBIOS. Joe Wright suggested
early during NZCOM development that
one should create an absolutely stripped
down CBIOS, one that contains only the
functions that are absolutely necessary to
get the system running and then imple-
ment all the bells and whistles in the
VBIOS. These extra features would in-
clude things like RAM-disk drivers, key-
board type-ahead buffers, logical drive
swapping facilities, and disk error recov-
ery management routines. With this strat-
€gy, one can actually achieve a larger TPA
with an NZCOM system than one had
under the standard CP/M system, since
the CBIOS can be made smaller and the
fancy features dropped when a larger
TPA is more important.

For example, the “Abort, Retry, Ig-
nore” message should be implemented in
the VBIOS, with the CBIOS returning
from disk errors with standard error
codes. With the normal VBIOS, the error
will simply be passed back to the DOS,
which will report the error in its usual way
(“BDOS ERROR on . ..” in the case of
the Digital Research BDOS). A more
elaborate VBIOS can detect the error,
report it to the user, and allow the opera-
tion to be retried. When the system is run-
ning in remote mode, either the simpler
VBIOS can be used or the prompt can be
vectored properly through the jump table
so that the remote user will be able to deal
with the problem.

Similarly, one should be able to handle

14

the swapping of logical drive names in the
VBIOS. There are a couple of pitfalls to
watch out for, however. If you change
logical names, you better make sure that
the disk system is reset, probably both be-
fore and after the swap. You also better
make sure that NZCOM can still find its
CCP file, which is normally kept in direc-
tory A15:. If you swap the A drive without
providing a copy of this CCP in the new A
drive, you’ll be in serious trouble. Of
course, the swapping would be handled by

a utility program, and it would worry
about these requirements. The VBIOS
would simply have the code for translating
references to a logical drive value in regis-
ter C into a possibly different physical
drive value.

I hope that this short discussion has
given some of you ideas for imaginative
applications of the new capability offered
by the NZCOM virtual BIOS. If so, 1
would love to hear about them and to see
sample code. @

e Plu*Perfect Systems

der CP/M-2.2 (875)

version)

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

— Backgrounder II: switch between two or three running tasks un-

— ZDOS: state-of-the-art DOS with date stamping and much more
(875, $60 for ZRDOS owners)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

e BDS C — Special Z-System Version ($90)
e SLR Systems (The Ultimate Assembly Language Tools)
— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+
— TPA-Based: $49.95; Virtual-Memory: $195.00

e NightOw! Software MEX-Plus ($60)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

The Computer Journal / #39

Generating LaserJet Fonts
A Review of Digi-Fonts Version 2.0

by Art Carlson

~ Tamreplacing my Compugraphic pho-

totypesetter with a LaserJet, and I have
been looking for a type generation system
which runs on my AT clone. Since I am
coming from a professional typesetting
background, my expectations are much
more rigorous than someone whose expe-
rience has been with daisy wheel or dot
matrix printers. I expect the laser system
todo everything my phototypesetter does,
plus do it better, faster, and more conven-
iently. That’s asking a lot, and most DTP
products have not yet matured to the
point where they meet my expectations.

Since the ability to generate type fonts
is the key to laser based typesetting, I have
been spending a lot of time and effort
looking for a suitable type generation sys-
tem. Several products managed to pro-
duce type fonts, but they didn’t fully sat-
isfy my demanding requirements. When I

‘tried Digi-Fonts it did most of what I
wanted, and when they released version
2.0 there was no longer any question
about what type generation program I
would be using.

Digi-Fonts

The Digi-Fonts system consists of
three parts. The first is Digi-duit! which
consists of programs and utilities which do
the actual work. Second is the typeface
library (now 34 disks and growing). Third
is Digi-install! which installs the fonts and
creates matching screen fonts if needed.
Actually, there is a fourth element which
is equally important--that’s the manual
which provides a lot of good technical in-
formation.

I have chosen Digi-Fonts because it
provides the tools and information which
enable me to customize the fonts to do
exactly what I want. This is very important
to me. I don’t like to be forced to make do
with what someone else decided that they
want. As I go into the details of some of
the things that I can do with Digi-Fonts,

The Computer Journal / Issue #39

keep in mind that it doesn’t have to be
this complicated for normal applications.
Digi-Fonts is easy to use in the average
office. You don’t need to do the things I
talk about unless you want to provide so-
lutions to the problems other programs
leave unsolved. I view Digi-Fonts as a
toolkit which makes average applications
easy, and advanced applications possible.
You only have to use as much of the
power as you need.

Digi-duit 2.0 sells for $89.95 plus $4
shipping. It includes disk 00 with eight
DIGI-FONTS (similar to Palatino,
Palatino Boid, Palatino Italic, Palatino
Bold Italic, Commercial Symbols,
Bauhaus Medium, Park Avenue Script,
and Hobo). Also included are an exten-
sive manual and a catalog of the typeface
library which now has 33 disks. Additional
disks are currently sold separately (even-
tually they will become part of Typeface
Library Vol. 2). For a little over $90
you’ll be able to do everything which I
demonstrate in this article (plus some
things which I'll probably forget to men-
tion). Digi-install versions for WordPer-
fect 5.0, Ventura/GEM, PageMaker/
Windows, or MicroSoft Word 4 & 5 are
available for $20 each.

The fonts come in outline form, and
you can generate the bit-mapped fonts
you need when you need them. You can
store the fonts which you use frequently,
and regenerate the seldom used ones
when you need them instead of tying up
disk space. DFI even provides a function
to save the commands needed to create
the fonts for a particular job to a batch
file that you can run whenever you need

the fonts.
Character Modifications

It used to be that a character was a
character and if you wanted something
different you had to buy another font.
But, now with electronic wizardry, you
can create many different faces from one

font file.

With DFI you can make fonts from 3
to 720 points in 1/10 point increments
(there are 72 points to an inch, so 720
points equals 10 inches). If a title is a little
too long, or if the text doesn’t quite fit the
page, you can change the type size to
make it fit. You can also alter the type size
to provide the correct emphasis and bal-
ance between the elements.

You can also modify the width of the
font as shown in Figure 1. The default
width is equal to the point size, but you
can change it in 1/10 point increments.
This is another way to make type fit the
job or to add emphasis. How expanding
the word “Stretch” to twice its normal
width for an ad about stretching your dol-
lar? Or reducing the width for an ad about
being squeezed for space? The use of par-
tial character sets will be very useful for
these applications.

Squeezed
Regular
Stretched

Figure 1: Examples of 14 point
Palatino squeezed to 6 point width and
stretched to 32 point width.

You can select between proportional
and fixed character width to make the
characters in a normally proportionally
spaced font line up in columns. They may
look a little odd, but they will line up. If
you frequently have this requirement, DFI
has fixed width fonts in its library which I'll
be changing to for program code listings.

Fonts can be flopped, slanted, or ro-
tated as shown in Figure 2. Flopped fonts
are a mirror image, and an example is the
word Ambulance painted on ambulances.

15

It looks backwards until you look at it
through your rear view mirror. Slanted
fonts look something like italic. Their feet
are on the baseline, and the top is pushed
over to the side. You can slant type within
the range of -45 to +45 degrees. In ro-
tated type the entire character is turned
instead of being distorted as in slanting.
You can rotate type in the range of zero
to 360 degrees. An application for rotated
type would be in preparing a form on the
LaserJet II which can not use both por-
trait and landscape fonts on the same
page. Standard wordprocessor or page
preparation programs don’t know how to
" handie flopped or rotated fonts. You’ll
have to use tricks or use a special pro-

Sianted
(¥ O Cum UT
Tloqqsb

Figure 2: Examples of slanted,
rotated, and flopped type.

Fonts can also be reversed into a white
character surrounded by a black box as
shown in Figure 3. Avoid reversed type in
the smaller sizes or with fonts having very
fine lines, as it may block up in the print-
ing process and and be difficult to read.
Small areas of reversed type output on a
clear transparency sheet can sometimes
be substituted for a camera negative.

Reversed

Figure 3: An example of
reversed type.

The font can be made as an outline,
with the portion enclosed by the outline
filled with white or a pattern. Normal
black type is merely the outline filled with
black. You can also turn the outline off
and just print the shaded portion. DFI
provides a number of gray scale and de-
sign patterns from which you can choose.
The patterns are generated from simple
text files, and DFI provides instructions
for writing your own pattern files. You
shouldn’t have much of a problem creat-
ing your own patterns after reading the
instructions and examining the pattern
files which they provide.

You can make shadow fonts with con-

16

The Computer Journal
Ihe Computer Journal

The Computer Journal
The Computer Journal

The Computer Journal

Figure 4: Examples of outlines, drop shadows, and shaded type.

trol over the direction and the length of
the shadow. The shadow can be printed in
one of the patterns.

And, of course, you can generate fonts
in either portrait or landscape.

These effects can be combined to pro-
duce some very interesting effects. For
example, a gray filled outline font with a
black shadow. Or a reverse font with the
surrounding portion printed in a pattern.
Figure 4 illustrates a few of the possibili-
ties.

The ability to make partial character
sets is a real benefit for these special ef-
fects where you usually only require a few
characters.

Partial Character Sets

One of the big disadvantages of bit-
mapped fonts is that they can take up a lot
of space on the disk and in the printer.
Large font files also take longer to upload
to the printer. In order to alleviate this
problem DFT enables you to specify which
characters you want in the font. This is
closely connected with symbol set which
Pll discuss next. Right now I'm talking
about the primary alpha/numeric charac-
ters.

As an example, I ran some tests using
36 point Bauhaus Medium normal--all
tests were performed on an 12.5 MHz AT
clone with a 40 Meg hard drive. I first
generated the full ANSI Windows set,
which took 1:58 {minutes:seconds) with a
file size of 148,378. I then generated just
the ASCII set which took 0:57 with a file
size of 70,591. Last, I generated only the
characters for the words “The Computer
Journal”. (Editor note: I know that the pe-

riod is always supposed to go inside the
quote marks, but that would indicate that I
also generated the period, which I didn’t.
When quotes are used to mark a command
or actual characters, I place the period
where it does not create an error!) This
took only nine seconds and the file size
was 9,860.

With DFI you can use Hex, decimal,
or ASCII characters to specify the charac-
ters you want. I just entered “The Com-
puter Journal”. DFI put them in order
and only generated the ones used. This
feature is extremely important for the
larger fonts which require more time and
space. It’s even more important when us-
ing the special effects which require even
more time. It is very convenient when ex-
perimenting with special effects because
you can generate just a few characters in
order to see how it looks.

Symbol Sets

The ability to print special characters
in addition to the usual ASCII numerals,
alpha characters, and punctuation, is one
of the very important advantages of the
laser printer. Providing the special charac-
ters (called symbol sets) for a specific job
is one of the headaches.

The characters are represented by one
byte per character, which limits the num-
ber of different codes to 255 (FF Hex).
The first 32 numbers (00 Hex to 1F Hex)
are reserved for special control codes in
normal ASCII, although some programs
also use these for special characters. AS-
CII only uses the lower seven bits (00 Hex
to 7F Hex) which is 128 numbers. Sub-
tracting the 32 numbers reserved for con-

The Computer Journal / Issue #39

trol codes leaves 96 numbers to represent the standard ASCII
character set.

Special characters (called extended characters) make use of the
full eight bits. This allows for up to 128 additional characters, al-
though some programs reserve the high bit set control codes (80
Hex to 9F Hex) for control codes because many printers respond
to numbers in this range as control codes. It is best to assume that
there are 96 additional characters available.

The challenge is to fit all the extended characters everyone
needs in 96 spaces. It can’t be done. The answer has been to create
many different symbol sets. The problem is that all the extended
characters required for a job may not be available in any one
symbol set.

_ People got along fine for years with just the 96 character ASCII
set. Why do they now need more than the 192 characters which

- would fit in an extended character set. It is because typists made do
with a limited set, but typographers and printers had a very rich and
extensive set of characters. Before lasers, typists used their limited
set to prepare rough copy and typographers added the special char-
acters. Typists typed, and typographers prepared typeset copy.
Now, people who may have only the skills of a typist, expect to sit
down at a computer and produce beautiful typeset copy--just like
what they used to get from the typographer. In order to accomplish
this they have to use the special characters which are one of the
things which make the difference between something which is type-
written and something which is typeset.

Some of the more frequently used symbols are the diacritical
marks such as the cedilla, circumflex, macron or umlaut, used in
foreign names; copyright, registered, and trademark; the degree
symbol used with temperatures; the EM and EN dash; bullets;
ballot boxes; the cent sign for pennies; and math symbols such as
plus/minus, divide, or multiply (typographers do not use the char-
acter X for multiply).

I am currently working on a manuscript which requires the
diacritical marks, the degree and copyright symbols, slashed zeros,
bullets, black boxes, and math symbols. The only way to handle this
without DFT was to generate a different complete font in each size
and face for every one of the required symbol sets. This would in-
volve a lot of fonts and disk space. It would also require compli-
cated style templates and a lot of embedded tags to force it into
PageMaker. I thought DTP was supposed to make it easier!

Now with DFI the solution is simple because it allows me to
select the symbols to make a font with exactly what I need (as long
as I don’t need more than 96 extended characters).

The symbol set is specified in a file with the SET extension, and
consists of the following commands:

1) Transfer--to move one or more character codes from the
source font to the printer font.

2) Composite--to create a new printer character from one or
more source characters.

3) Parameter--to change the basic scaling parameters of the
font: pointsize, pointwidth, slant, rotation, and flop.

4) Font--to switch the source font to a different Digi-Fonts font
from which the following characters will be drawn.

Using the Transfer and Font commands I can start with a basic
font such as Palatino, transfer the degree sign from the Palatino
DFI set, and transfer the bullet, black box, and math symbols from
the Commercial Symbols font. The composite command allows
you to specify the position and scaling size of the individual ele-
ments, and is used to make the slashed zero and accented charac-
ters.

The Computer Journal / Issue #39

In Conclusion

Several things impressed me about Digi-Fonts. The first was
that their manual explains the file structure and contains enough
technical information to allow you to modify the files if you so
desire. They even include some information on coding outline data
which may be enough to get you started if you want to create a few
custom characters which can be used with their scaler. The scaler
can be run independently of the menu, and can even be executed
from an application program. I like the fact that they provide the
technical information which is missing from so many other manu-
als.

The second thing is that they have a very powerful product. It
can be used for the easy jobs, but it is also a toolkit which enables
me to do the formally impossible jobs.

Third the product is very reasonably priced with a large library
of fonts available.

Digi-Fonts is not standing stili. They are preparing additional
fonts such as fractions, which are not handled well by any other
programs. This will be a symbol set. That is, you will be able to
make a fraction font using any typeface style, by merely selecting
the fractions symbolset. It will be included on disk 35, along with
Courier, Line Draw, Line Printer, and others. Several other ven-
dors will be using DFI’s outline font library with their products.
Corel Draw, which will be available July 1989, 1.1 yses Digi-Fonts
outlines directly.

I strongly recommend Digi-Fonts for anyone with access to a
LaserJet compatible printer. I will be using their product to dem-
onstrate applications in the PCL programming series. @

Billions of Fonts!

DIGI-FONTS for HP LaserJet Plus or Il printers

Largest Selection
More than 272 styles

Most Flexibility
Dege-duce! 2.0 makes
high qudlity fonts any size,
3-720 pfts, plus slant, flop,
rotate, reverse & more!
Incredible Special Effects.
Quick and easy

Works great with most

software programs.

Lowest Prices

Dege-duce! 20 $8995 + 84 ship

8 DIGI-FONTS, Typeface catalog
Complete Set

Dige-duct! 2.0 + 272 DIGI-FONTS

Call Todq-yl vl FD ONTS, INC.

1(800) 242'5665 Golden, Colorado 80401

(303) 526-9435 FAX (303) 526-9502
This ad set entirely with DIGI-FONTS Typefaces. VISA, MC, AMEX, COD

$489.90 + 7 ship

17

Plu*Perfect Systems == World-Class Software

BaCKGIrOUNAET il ceeeeeerreeerersssncressssmnnissscssrresscesssssensasssssnnsasssssnsesssananssnsssas $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

205 VE3 (=1 1 1 PO OE $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

A1 910 1 $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDSK coeeieeeiieiieeemesremcesssssransennssmsssssnsssnnsnasnsnsnnnssnnsssonnsnmnsnnsssnnnss $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY eeececeeemecrssssseemmmssstnnisssnnssssassesasssssnsasnanasssasnnammnneessssssssnnnnssse $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

JOIF NG cereoeeiieereerrieencncsassssessnessensssnmsstrasssnnssenssannsenssassnsstnssssasssnnsnenssannranns $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. _410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

Advanced CP/M

Making Old Programs Z-System Aware, Z-80 Interrupt Bug

by Bridger Mitchell

. How can a programmer add Z-System capability to a program she
or he is writing in a high-level language (HLL) such as C or Pascal?
David Goodman raised this interesting question earlier this year. The
latest version of the BDS-C compiler as well as Turbo Modula-2 have
built-in access to the Z-System. But most HLL compilers were written
before the Z-System was fully developed, and do not provide for
obtainingthe address of the Z-System external environment or using its
features.

Asimilar situation arises occasionally, when one wants extend a well-
functioning program with additional Z-System features, but source
code for the program is unavailable. New routines can sometimes be
patched inafter a limited disassembly to determine key spots in the flow
of program control.

The Standard Z-System Header
In both cases the common need is to obtain the address of the Z-
System environment. A Z-System application begins with this standard
header (the addresses shown are those when the application is loaded
at 0100h):

0100: jp start
0103: db ‘Z3ENV’,1 ;signature for ZCPR command processor
0109: dw 0000 ; where ZCPR puts z3env address

When the ZCPR 3.3 or 3.4 command processor loadsa COM file to
100h and finds the “Z3ENV’ signature at 103h it “installs” the external
environment address at 109h. Thus, the application starts up with the
running system’s environment address available to it at 109h. Of
course, the programs that don’t know about the Z-System have other
code at 100h.

A newcomer to CP/M might well ask, Why is such a round-about
approach used? Why isn’t the external environment address available
from a system call, or at a fixed, absolute address? Had the Z-System
been developed as part of CP/M, the environment address would most
likely have been directly supplied via a BIOS or BDOS system call. But
coming on the scene much later, and striving to be compatible with

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s the
author of the widely used DateStamper (an automatic, portable file time
stamping system for CP/M 2.2); Backgrounder (for Kaypros); Back-
Grounder ii, a windowing task-switching system for Z80 CP/M 2.2
systems; JetFind, a high-speed string-search utility; DosDisk, an MS-
DOS disk emulator that lets CP/M systems use pc disks without file
copying; and most recently Z3PLUS, the ZCPR version 3.4 system for
CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St., Santa
Monica CA 90402, or at (213)-393-6105 (evenings).

The Computer Journal / #39

existing systems, the Z-System required special code in both the ZCPR
command processor and in the Z-System-aware application. In addi-
tion, expanded Z-System headers have been developed for “type-3”
and “type-4” applications. In these cases, the command processor and
the application are tightly coupled during the program loading process,
and the application is usually loaded, or relocated to high memory and
executed there.

Actually, there’s a good chance that an absolute address, some-
where in the first 64 bytesof the CP/M memory map, would have served
nicely as a permanent location for a pointer to the Z-system environ-
ment. And the retrofit solution I develop in this issue’s column uses
such an address.

In any case, the standard is now based on the 11-byte Z-System
header just described. The difficulty is that, in an HLL that antedates
the Z-System, the very first bytes of a compiled program often contain
the key run-time routines needed by most every program developed
with the compiler. And in assembly-language programs those first bytes
can be almost anything.

You might initially think that it would work just to move the code (or
code and data) in those first bytesto the endof the programand replace
them with the standard Z-System header. You would make the “start”
address the now-moved code, and at the end of that you would add a
jump back to the address following the header. However, this quickly
becomes a messy, case-by-case patch. Moreover, in many instances,
other routines in the programs may expect to find parameters or entry
pointsat particular locations at the head of the program. If you’re lucky,
the patched program simply won’t run; otherwise, it will do something,
but get bad values or behave incorrectly.

In the remainder of this column I discuss two interesting ways to add
Z-awareness to older programs.

The Slider
In what I will call the “slider” approach we take the COM image of
the program and prepend both a Z-system header and some preamble
code in front of it. The extra code first saves the environment address in
a safe place, and then moves the COM image down in memory on top
of itself. Finally, it begins executing the original program.

The SLIDER code in Figure 1is abit tricky. The basic idea s to use
the block move LDIR instruction to slide the original program down in
memory, and on top of, the very code that does the move.

SLIDER didn’t take this final form immediately. At one point 1
momentarily convinced myseif I had discovered an elegant way to do
the slide; it involved putting the LDIR instruction just preceding the
start of the TPA, and moving the bytes that had originally been there
(the tail end of the command line buffer) back into place as part of the
slide-down process. But that was indeed too clever —1I had forgotten
that the Z80 actually executes its auto-repeated instructions by repeat-

19

Figqure 1.
The SLIDER Approach

SAFEADDR equ 033h ; location of safe 5-byte buffer

; Z-system header, at beginning of program.

jp pre
db *Z3ENV',1 ; signature for ZCPR command processor
envptr: dw 0000 ; where 2ZCPR puts z3env address

H
; code moved to SAFEADDR+2
;

ldir

ret

r
; followed by code to save the environment and
; slide the original program to 100h

pre: 1ld hl,envptr ; save environment pointer from header
1d de, SAFEADDR ; and move "LDIR RET" code too.
1d be,5
1dir
H
gettop: 1d hl,0 ; get SP value to HL
add hl,sp
push hl ; save on stack
1d de, (0006) ; if SP < top of tpa
or a,a
sbc hl,de
pop hl ; ..recover SP
jr c¢,getsize ; ..use SP
ex de, hl ; ..elge use top of tpa
getsize:1ld de,origcode ; calculate bytes to move
or a
sbc hl,de
1d b,h ; into be
1d c,1 . ’
ex de, hl ; source -> origcode
1d de,100h ; destination -> tpa
push de ; put startup addr on stack

jp SAFEADDR+2 ; jump to LDIR

;

H
origcode equ $; load original COM file to here

Fiqure 2

The ROLLER Approach -- Preamble

org 100h

;
jp 0000 ; patched later by debugger
RET ; return opcode at 103h

edly fetching the opcode from memory for each execution of the repeat “loop”. Thus,
as soon as any byte was moved on top of the LDIR the next fetch would get a totally
different “opcode” and everything would crash.

Consequently, the final SLIDER code first copies both the environment address
that has been installed by the command processor in the header and three additional
bytes of code to the safe address on page 0. After calculating how much to move,
SLIDER will jump to these code bytes (LDIR, RET). They will be the last SLIDER
instructions executed, with the return instruction sending control to the original code
at the beginning of the TPA (0100h).

How many bytes should be slid? Well, we could determine this for the specific
program, and patch in the exact value each time SLIDER is prepended to an old
program. Instead, I've chosen to make the calculation automatic, and move the
maximum number of bytes (the extra milliseconds required should be of no conse-
quence in this application). Usually, it would be prudent toslide the entire TPA. But

20

it is possible that the active stack is internal to the com-
mand processor (rather than an external stack in a Z-
System buffer). Moving the contents of the stack would
create havoc for an application that exited by returning to
the command processor rather than with a warm boot. So,
if the stack pointer address is in the TPA, the SLIDER
code moves only the bytes below that point.

Afterit has been runonce, the in-memory image of the
original program can be reexecuted by the command-
processor’s GO (or JUMP 100) command (this assumes,
of course, that the original program is itself reexecutable
--sometimes it won’t be). When reexecuted, nothing gets
moved: what will be at 100h is the original image of the
COM file (except as changed by its actual execution), with
the environment address already in the safe location from
the initial execution.

You can see how this works once you've built the
SLIDER by using the following GET and PEEK se-
quence.

GET 100 testfile.com
PEEK 100
JUMP 100
PEEK 100

The slide-it-down method should be fairly widely
applicable. It requires one absolute five-byte buffer out-
side the TPA -- a place where a copy of the Z-System
environment address can be stored for routines in the
program to access. In the code, I've used five bytes at
0033h. This is part of the 8-byte region reserved for RST
30 -- the seventh Z80 restart instruction. Although a very
few debuggers use this RST, most use RST 38. Because
the debuggers install a 3-byte absolute jump instruction
(at 0030h or 0038h) and leave the other five bytes unused,
those bytes are good candidates. However, some remote
CP/M system software uses bytes beginning at 003Bh. At
the moment, I believe (6033h is the safest choice.

You might think that another RST location would be
an even better choice. Well, probably not. A number of
BIOSes use one or more of the lower RST regions for
interrupts, clock buffers, and disk parameters. The
chance of colliding with some BIOS is much higher.

Putting it Together
How do you cobble the SLIDER onto an existing
COMFILE.COM program? Here are the steps:

e assemble the slider to binary, name it
SLIDER.CIM

® determine the number of records in
COMFILE.COM, using e.g. ‘‘SD
COMFILE.COM /C”

o GET 100 SLIDER.CIM
e GET COMFILE.COM

® SAVE <NN+1> NEWFILE.COM S, where
NN+1isone

record more than the original size

This can almost be made into an automatic ZEX
script; only the number of records to be saved must be
entered from the console. Moreover, the SLIDER.CIM

The Computer Journal / #39

is position-independent and can be reused with another old
program. (I use the CIM file type, to emphasize that the
image is not an executable file. That way the command
processor won’t attempt to run SLIDER, should you ever
mistype it as a command.)

OK, this gets the dirty work done. Of course, you will
need to add your own code to use the Z-System environ-
ment. You might, for example, access the termcap parame-

ters using HLL routines and incorporate them into screen

" management functions. All of this code can use the value it

finds at 0033h as the pointer to the environment. In effect,

the slider method converts an unknown, run-time address

into a known absolute address, so that HLL and other

subroutines can be compiled and linked with an address that
‘is determined in advance.

If it is a program in COM file format that you are
augmenting, you face amore extensive task -- disassembling
some of the code to understand the program and find
suitable points at which to divert control to your new rou-
tines. But the same slider method will serve to obtain the
environment address that your Z-System routines will need.

Whatever the specifics of your Z-System routines, be
certain that the first one that uses the environment pointer
value verifies that it is non-zero. A null value would mean
that the command processor did not installthe environment
address in the header. The host system is therefore not
ZCPR 3.3 or later. And an attempt to use 0000 as the
environment address will probably garble or crash the pro-
gram.

Limitations.

The slider approach is reasonably portable. However, I
can think of a few areas in which difficulties can arise.

The newly-Z-conscious application could conflict with
other programs, such as configuration utilities, that refer to
the disk image of the application. A specialized program
designed to patch default options into the application would
expect to find the data bytes to be patched in their original
locations in the file. If run on the modified application, the
configuration program would either fail tomake the patch --
protesting that it can’t recognize the file -- or proceed to
change the wrong bytes.

A second type of limitation could occur when other,
previously-coded patches are added. If they are added tothe
slider-modified file there will be conflicts. The solution is to
do all other patches first.

Finally, under BackGrounder ii it is possible to attach
program-specific keyboard macros to an application. BGii
does this by appending the macro definitions to the end of
the COM file. Thus will continue to work just fine on a slider-
modified file. If your file already has appended definitions,
they should be removed before making the slider modifica-
tions, and then attached anew.

A Roller Version

I discussed a preliminary version of SLIDER with Jay
Sage, and, as always, he had a number of excellent ideas for
improving things. Jay outlined a second approach that in-
volves “rolling” off just four bytes at the beginning of the
original file, copying them into a buffer appended to the end
of the file,and putting the environment-detection code after
that.

ROLLER thus consists of a precamble and a postamble,

The Computer Journal / #39

Figure 3
The ROLLER Approach -- Postamble

; Position-independent code. Assemble to ROLLER.CIM

SAFEADDR equ 033h

org 100h ; any origin will do
buf: ds 4 ; buffer for 1st 4 bytes of orig. program
patch:

push hl ; save potential env addr
inc hl skip to 'Z3ENV' signature
inc hl
ine hl
1d a, (hl) ; check 1lst 2 bytes
cp ‘2’
jr nz,bad
inc hl
14 a, (hl)
cp '3*
jr nz,bad
1d de,1Bh-3 ; point to reflexive address in environment
add hl,de
1d a, (hl) ; get it
ine hl
1d h, {hl)
1d a,1
pop de ; get potential env addr
push de
or a,a
sbc hl,de
ex de,hl ; potential env addr to HL
jr z,store ; Z = found the environment

bad: 1d hl,0 ; store NUL if no environment

store: 1d (SAFEADDR),hl ; at a known, safe location
pop de ; clear env addr from stack

~

compare reflexive address

-~

H
; find Where Am I address
H

14 hl,-2 ; precompute SP address

add hl,sp ; 80 we can pop return addr from stack
call 103h ; call the RET instruction, pushing wai
wai: 1d sp,hl ; point SP at return addr.
wail: pop de ; get return addr from stack

; if interrupted during "ld sp,hl”
H de = wail, else de = wai

1d a, (de) ; get opcode at return addr

add a,l0h ; set CY if HL points at LD SP,HL (0F%h)
; clear CY if hl points at POP DE (0ODlh)

14 hl,-(wail-buf) ; compute abs. address of buf
adc hl,de ; (if ret addr was wai, CY corrects)
r
1d de,100h ; restore lst 4 bytes of program
push de
1d bc, 4
ldir
ret ; return to run program

shown in Figures 2 and 3. Instead of using a standard Z-System header, it relies on
the fact that, in addition to placing the environment address in a standard header,
ZCPR 3.3 and 3.4 call the program with that address in the HL register pair. The
postamble code, therefore, first verifies that that HL value points to a valid
environment, and then stores the pointer at the SAFEADDR location.

Note that it uses the handy trick of calling a routine (at 103h) that simply
returns, in order to get the address of the next instruction onto the stack. With that
available, it can calculate its own address (wai = “where am 1?”") and finally the
address of the 4 original bytes to be restored to the head of the program.

To make this calculation correctly requires some fancy footwork to handle the
possibility that an interrupt occurs during the calculation and changes the address
on the stack. I didn’t get it right the first time, and I’'m grateful to Don Kirkpatrick
for suggesting the final code. You will see why he was thinking along these lines
further on in the column.

21

The steps to put ROLLER together are:

¢ assemble PREAMBLE to binary or hex
e assemble ROLLER to binary, call it ROLLER.CIM

® Joad debugger and original program, and note “next”
address

e move bytes at 100-103 to NEXTADDR
load PREAMBLE.CIM (or HEX)
patch the JP address at 101h to NEXTADDR +4

load ROLLER.CIM to NEXTADDR. Note new
next address.

® cxit debugger
- @ save nn pages

Alternatively, you can skip the step of assembling the
preambile into a separate file and instead assemble the bytes
interactively with the debugger.

Clearly, ROLLER requires a bit more manual effort
(though a good ZEX script will ease that, t0o). But it has the
advantage of leaving all but the first four bytes of the
program intact in the file image. This approach may be
better, then, for any program that has a companion configu-
ration utility.

interrupt Bug Unmasked

In the previous Advanced CP/M column 1 discussed
situationsin which it is necessary to disable interrupts before
using the stack pointer for special purposes, or when modi-
fying critical code. I included a routine to test whether Z80
interrupts were enabled before disabling them, and a com-
panion routine to conditionally enable interrupts if they had
originally been enabled. But I noted that some peculiarities
with the Z80 interrupt status had been reported, and asked
readers for help.

Well, only a day or two after my own copy of TCJ #38
arrived in the mail Don Kirkpatrick was on the phone to say
that he’d just read his copy and was sending me the straight
scoop on detecting interrupt status in the Z80. Don has
done a fair amount of testing and established that the Z80
has a subtle defect -- it effectively “lies” and gives a false
interrupts-enabled status value in one particular case --
when an interrupt occurs exactly during the execution of the
instruction to load the accumulator and flags with the inter-
ruptregister status (LD A,I) or theinterrupt refresh register
(LD AR).

This bug, which is apparently present in all masks of the
780, was fixed in the HD64180 and Z.180.

The precise consequence of this bug is that last issue’s
disable/enable interrupt routines will fail to re-enable inter-
rupts on a Z-80 -- but only once in a (great?) while! This, of
course, is one of the most elusive and difficult computer
problems to track down -- it depends on the occurrence of a
random event -- a real-time interrupt at precisely the
moment this single instruction is being executed!

Having identified the exact problem, Don, author of two
interesting TCJ articles on the iobyte and disk buffering,
goes on to provide a robust solution. The key idea is that
whenever an interrupt occurs, the cpu pushes the address of
the next instruction (PC) onto the stack, so that the return

Figure 4. Disable and Re-enable Interrupts

Routine corrects Z-80 cpu bug and replaces version
published in TCJ #38. Routine aspumed to be at or above 100h.

Save interrupt status and disable interrupts

isable_int:

push af ; save registers
push bc

push hl

1d hl,-1 ; get SP address

add hl,sp

1d (hl),0 ; put a nul there

1d a,i ; get interrupt status to F register
1d a, (hl) ; get byte at (sp) to A

; if an interrupt has just occurred,

; this will be the high byte of the

; address of this instruction

push af
pop bc ; and into C
and a ; was byte at (sp) changed?

jr z,savit

set 2,c
savit: 14 a,c

1d (intflag),a

; yes, correct z80 status bug
; and save it

pop hl

pop be

pop af

di ; disable non-maskable interrupts
ret

H
; If interrupts were previously enabled,
; re-enable them.
H
enable int:
push af ; save register
1d a, (intflaqg) ; if interrupts

bit 2,a ; .. were previously enabled
ir z,1$
ei ; ..re-enable them
1$: pop af
ret

intflag:ds 1

from servicing the interrupt will resume the program code as if nothing has
occurred. So, we first put a known value at that very spot in the stack. Then, we
execute the “LD A,I” instruction and, before using the stack ourselves, test to see
if the stack contents has changed. If it has, an interrupt must have occurred, and
Don’s code then forces bit 2 of the status flags to be set, thus correcting the wrong
status.

The code is shown in Figure 4. It assumes it is running at an address of 100h or
higher, so that the high byte of the address is non-zero. Don further notes that the
7280’s interrupt instructions are privileged and available only in supervisor mode.
He therefore recommends testing for a Z280 (see this column, TCJ #37) and
using a separate routine. This is first-rate analysis, and earns my enthusiastic
nomination for coding-insight-of-the-month!

I also enjoyed talking with Don about his home-brew CP/M system -- it’s built
around a Z280 with 8-inch drives-- and T hope he will take up the challenge to write
something about it for all of us. This chip, with a high-speed cache memory, paged
memory manager, and privilege instruction set, holds exciting promise. But it has
been held back by incompatibilities with some existing Z80 code.

Now, in the most recent masks of the new cpu, Zilog has eliminated earlier
conflicts when running self-modifying code. This should make it possible to run
ZCPR 3.4 and essentially all Z-System tools without modification.

(Continued on page 37)

The Computer Journal / #39

C Pointers, Arrays and Structures Made Easier

Part 3: Structures in C
by Clem Pepper

Structures

‘When we truly comprehend the structure (and its kissing cousin, the
UNION)we have planted our flag at the summit of the Mt. Everest of
C. It is not that the structure is all that difficult, because it is not. Once
we have acquired an understanding of the pointer and array, that is. It
isa lack of know-how with respect to these that gives us those structure
shudders. So the more we know of these fundamentals the more
effective our programming with structures will become.

The index to the accepted “Bible” for the C language, The C
Programming Language by Kernighan and Ritchie, lists fifteen
(15)”structure” entries. While the distinction would appear to be
tarnished by the 20 references to “pointer” and a tie of 15 with “array”
this is not unexpected given that the definitive usage of pointers and
arrays always precede those of structures. A genuine true-to-life struc-
tureis bound toinclude an array or twoat the very least and heaven only
knows how many pointer declarations will be spun out of it.

The authors dedicated one full chapter, the sixth, to the topic of
structures. There are only eight chapters in the book, which should tell
us something.

There might be the temptation, best resisted, to compare the array
with the structure. The array, in an expansive frame of thought, is a
structure of sorts. It is limited to a single variable type and is tightly
defined in its structure. That is, we might say the type array practices a
strict monogamy in contrast to the swinging lifestyle inherent to the type
structure.

The structure is an aggregate type--a conglomerate of all types,
including the structure. That is, an array may be declared as integer,
character, float, double, or so on, but just the one or the other and no
more. A structure template, on the other hand, may include declara-
tions of any and all types from integer and character to array and
embedded structure. With the structure we are able to write code
which, when carried to the limit, may be incomprehensible even to its
author.

A basic structure template, as it is called, looks somewhat like this:

struct tag {
int k;
float £;
char arr(4);
}:

“tag” is an optional name for the structure. Any legal name can be
used in place of tag.

The declarations inside the { }s following “tag” are referred to as
structure “members.” Observe that member types may differ--that is,
our example includes an integer, a float, and an array. Wherein lies the
structure’s strength.

The *;’ following the closing brace must be present. It follows an

The Computer Journal / Issue #39

optional attribute. The example template does not include attributes.
The attributes are variables assigned to the structure members. Since
the members have little value without the attributes we know they will
have to appear somewhere. Which they will. The meaning of attribute
will be made clear in the example programs.

It follows that either the tag or the attribute is optional with the
declaration, but not both. One or the other are required. For myself, I
prefer to retain the tag even with attributes. In any event, if the
declaration is global, and the attributes are defined withina function we
really must have a tag to link the two together.

The rubwithstructures, in part atleast, is that allmanner of variants
from this basic definition are possible. Right off, the closing brace and
semi-colon are by no means the end of it. The unattended semi-colon,
if you will recall, simply represents a NULL. It is replaceable with any
number of statements, either singly or as blocks. Which is to say we can
enter any number of attributes ahead of that closing NULL.

The declaration as shown may be local or global. If global, as
frequently is the case, the attribute(s) may be either local (within a
function) or global. As a starter, we can conceive of three potential
schemes:

(1) global structure declaration with global attributes.

(2) global structure declaration with local attributes.

(3) local structure declaration with local attributes.

At this point we have a structure declaration, and declarations for
individual members of the structure. But no more. That is, no memory
has been allocated for any of these variables. Because there have been
no assignments made. No assignment, no allocation.

A significant use of structures relates to lists. Lists typically involve
a diversity of types. Names, addresses, and phone numbers are lists of
import to us all. So suppose we look at an illustrative program based on
these as shown in Listing 11.

For convenience in this first example the structure and all its
associated quantities will be local, within main().

On compiling and running this program we see on our screen:

My friends are:
Carlisle at phone no 003-6699.
Jim at phone no 555-9990.
Dottie at phone no 999-5602.

Some readers may cry “foul” in that this first example employs
pointers. Well, we may as well get used to pointers, because they are
going to pop up wherever we go in our experience with this most
intriguing language.

The declaration is “static” because that is the only way to allocate
memory to a structure declared within a function. Externally declared
structures can be initialized without the static declaration. The declara-

23

tion is with reference to the variables, not to the tag.

The tag in this structure is “friends.” It is not really required for this
example as we also have the attribute “numbers[3]”. We note there is
no reference to “friends” anywhere in the program.

This structure has two members:

char *name;
char *ph_num;

The array declaration may appear a bit tricky. We are declaring
three elements,

numbers(3] = {
‘‘Dottie’’, *‘'999-5602'",
f1Jim’’, 44555-9990' ',

s*Carlisle’’,’'003-6699"
} s
but there are six strings in the assignment. How are we to explain this?
Actually, there really are but three elements in the array. The trick is
that there are two arrays. The first is:

numbers{3].name = { ‘‘Dottie’’,’’'Jim’’,’’Carlisle’’ };
and the second:
numbers[3].ph_num = { ‘‘999-5602‘,’/555-9990",' 003-6699" };
The printf statement shows how this works in practice.

printf(’/ %8s at phone no %s.\n’’, \
numbers(i].name,numbers{i].ph_num);

Thedot iscalled the “structure operator.” With the array we used an
index number (or subscript) to identify a specific element. No such
index exists for the structure. Here the dot relates a structure member
to its attributes.

Note the plural, attributes. It is here where the programming power
embedded in the structure becomes available to us. Once a member
has been declared it can have as many attributes as needed.

While the dot will suffice for a great majority of our programs the
time will come when a more potent operator is required. Rather quickly
as a matter of fact if we are at all active in our programming.

The “pointer operator” for use with structures is the ->. Really
resembles a pointer too, wouldn’t you say?

Consider Listing 12 which is simply the next step in the evolution of
this example.

This is the same program exactly except it now uses the structure
pointer operator, ->, in place of the dot operator. However, there are
significant differences in how the variable declarations are performed.

In our first example we made a point of not making use of the tag,
friend. In this we must, as no attribute is included. The closing semi-
colon is required.

In place of the attribute we have declared a second structure

static struct friends numbers[3] = {
‘‘Dottie’’, ‘‘'999-5602'',
1 Jim’’, ¢¢555-9990' ",

‘+Carlisle’’,’’'003-6699"
} i

The two declarations are related through the common tag, “friends.”
The members of this structure are the two arrays; there is no attribute.
And lo--we have yet a third structure declared:

struct friends *pals;
pals = &numbers[0];

24

Listing 11

/* STR_EX1.C ol
*+ A firat exercise in structures */
#include <stdio.h>
$define CLRSCRN "\033[2J"
/* == Begin program == */
main()

{

/* ANSI screen clear */

int i = 3;
static struct friends {
char *name;
char *ph num;
}
numbers{3] = {
“Dottie®, "999-5602",
Jim, “555-9990",
“Carlisle®, *003-6699"
}
puts (CLRSCRN) ;
printf("My friends are:\n");
while(i--) {
printf(* 8s at phone no %s.\n", \
numbers|i}.name,numbersf{i].ph num);
}
exit(0);
}

Listing 12
/* STR_EX2.C *
** A variation of STR_EX1.C using structure pointers */
#include <stdio.h>
$define CLRSCRN *\033[2J"
main()
{
int i = 3;
static struct friends {
char *name;
char *ph_num;

/* ANSI screen clear */

Yo
static struct friends numbers{3] = {
"Dottie®, =999-5602",
=Jim", *555-9990",
“Carlisle",“003-6699"
Y
struct friends *pals;
pals = &numbers{0); /* pointer to array address */
puts(CLRSCRN) ;
printf(*My friends are:\n");
while(i--}) {
printf(* $s at phone no $s.\n", pals -> name,\
pals -> ph num); pals++;
}

exit(0);

in which we declare a pointer, pals. We then assign this pointer to the
beginning address of the array.

So now that we have this elaborate structuring of structures how dowe
make use of it? Through the common association with friends, that’s
how.

The assignment pointer, *pals, relates structure “friends” with struc-
ture “numbers.” We will use “pals” to point directly at the array
members we wish to access. To see this, compare the printf statements
in the two listings.

Listing 11 -
printf(‘’ $s at phone no %s.\n’’, \
numbers[i].name,numbers[i].ph num);
Listing 12 -

printf(‘‘ $s at phone no $s.\n’’,\
pals -> name, pals -> ph_num); pals++);

The Computer Journal / Issue #39

We see there is no reference to “numbers][i]” in the second. In its
place we find the pointer “pals.”

In actuality, when we think of it, the while loop in both versions
increments the array. The first directly with the index, the 2ndindirectly
through the pointer.

Note that the declaration of *pals is tied to the structure “friends.”
Then the assignment pals = &numbers{0] links the structure declara-
tion to the pointer.

The pointer/structure relationship is emphasized as it can be confus-
ing. We must feel comfortable with the use of pointers if we are tomake
the best use of structures in our programs.

Now, for an exercise, relocate the declaration

static struct friends {
char *name;
char *ph _num;
Yo

external to main(). Is static necessary to the declaration or can it be
dropped? Re-compile and run the program. What can we learn from
this?

The next example, Listing 13, may come across as a bit on the heavy
side. But we have to move right along, and with a bit of thought we
should be able to interpret the action of this program.

The example intent is to exhibit a touch of the power available to us in
the structure. In this program descriptions of two families are provided.
They differ in a number of respects, including the total number of
family members. The first family has five members, the second four.
Twostructures are declared in which the families are defined. Note that
with these structures we could include any number of families but two
will suffice for illustration. The second structure has another nested
within it.

On running the program we will see this on our screen:

George has a wife, Sue, and 3 children.

George is 40; his wife Sue is 37.

Their children, Bill, Lynn, and Jean are 16, 13, and 9.
They get by on George’s salary of $22000.

Phil has a wife, Marge, and 2 children.

Phil is 54; his wife Marge is 53.

Their children, Jill and Robert are 31 and 28.
They live well on Phil’s salary of $45000.

The initial structure establishes the basic design of the family. Three
parameters are defined: the family size (number of family members),
the number of children, and the family income. Income is rounded off
to the nearest dollar, so we use unsigned rather than float as the type.

struct family { /* first structure template ¥/

int size; /* First */
int no_chil; /* structure */
unsigned int income; /* members */

Yi

Now that we have defined the family in broad terms we need to get
down to specifics. This is where the second structure enters in.

/* second structure template */
/* nested structure */

struct fam des {
struct family det;

char dad{MAX_LEN]; /* Nested */
char mom[MAX LEN]; /* structure */
char ch_1{MAX LEN]; /* members */

char ch_2[{MAX LEN);
char ch_3[MAX LEN];
int age[5]; };

The opening structure simply declares the design for the family.

The Computer Journal / Issue #39

Note the absence of any reference to “family” in this. That reference,
however, is prominent in the nestedstructure. Inthis declaration we are
assigning names and ages. These are to be saved in arrays of ten
characters or less in length. The maximum size of this family is five
individuals. Note we could have made it 20 were that in our interest.

Because these are global declarations we need not include static in the
declarations. That changes though when we make additional declara-
tions inside main().

static struct fam des home 1 = {
/* initializing variable home 1 */
5, 3, 22000, ‘‘George’’,’’Sue’’,’’'Bill’’,’'’Lynn’’,’’'Jean’’,\
40,37,16,13,9
}i
static struct fam des home 2 = {
/* initializing variable home 2 */
4, 2, 45000, ‘’'Phil’’,’’Marge’’,’’Jill’’,’’Robert’’, "’’’ \
54,53,31,28
}i

Here we are declaring new structures related to the second external
declaration, fam_des. We must provide a description for each family,
not too surprisingly, of dad and mom and the kids and their ages.

But whoa! hold on there. The first three entries go back to the first
declaration: family size, number of children, and the take home for their
support. How’s this for a clue?

struct family det; /* nested structure */

We can’t just ignore the first structure, and we don’t. The declara-
tion for the second is directly linked to it. So even though there is no
reference to “family” in the local declarations, the link exists through
the external declarations. And we thought pointers are confusing?

Now, suppose we increment the fun by replacing the dot operators
with their pointer counterparts.

In this version (Listing 14) there are no changes to the external
declarations. But as with Listing 12 there are significant differences
inside main(). Instead of two local structure declarations we now find
but one. An array yet.

static struct fam des home[2] = { {
5, 3, 22000,
‘‘George’’,’’Sue’’,’''Bill’’,’''Lynn’’,’'Jean’’,40,37,16,13,9
e {
4, 2, 45000, ‘’Phil’’,’’Marge’’,’’Jill’’,’‘Robert’’, "’’’ \
54,53,31,28
} I

struct fam des *abode;
abode = &thome[0];

Again, suppose we relate the number of members in the nested
structure “family det” ,(6), to the array assignments. Gosh, here home
has only2 array elements declared with 13 entries for the first and 11 for
the second.

Well, we have got to back up all the way to the beginning to piece it
all together. Let’s see--we have family size, number of children, and
income. No change there. Then we have dad, mom, and the kids. Again,
familiar. Next comes everyone’s ages which has its own array. So all is
accounted for.

Again, we create a pointer, abode, related to the second structure,
and assign its address to the zero element of the array home. Hopefully,
this has a familiar ring to it.

The printf statements, as with Listing 12, utilize pointers. With
abode pointing to home[0] printf displays the first family statistics.
Incrementing abode sets it pointing to family number two. (We also
insert an empty line for easier reading on our screen.)

25

printf(‘’‘%s has a wife, %8, and $d children.\n’’,\
abode->dad, abode->mom, abode->det.no_chil);

printf(’‘ss is %d; his wife %8 is %d.\n’'’, abode->dad,\
abode->age([0], abode->mom, abode->age{l]);

printf(’‘Their children, %s, %8, and %s are %d, %d,\
and %d.\n’’,abode->ch 1, abode->ch 2, abode->ch 3,\
abode->age[2), abode->age[3], abode->age[4]};

printf(’’They get by on $8’s salary of $%d.\n’’\
,abode->dad, abode->det.income);

abode++;
printf(‘‘\n’’);

printf(‘‘%s has a wife, %8, and %d children.\n’’,\
abode->dad, abode->mom, abode-~>det.no chil);
printf(‘‘ss is $d; his wife %8 ie %d.\n’’,abode->dad,\
abode->age([0], abode->mom, abode->age[l]);
printf(’‘Their children, %s and %s are %d and %¥d.\n’'’,\
. abode->ch_1, abode->ch 2, abode->age[2], abode->age[3]};
printf(’‘They live well on %e’s salary of $%u.\n’’,\
abode~>dad, abode->det.income);

With some additional effort we could set up a new function just to
display the family statistics. This would reduce the number of printf
statements to a single set. Our experience with C combined with the
information provided in this series should enable us to do this.

Our need now is to write some structure exercises of our own simply
to firmly cement the concepts in our minds. As a starter, we might
consider the three dominant US auto manufacturers: General Motors
(GM), Ford, and Chrysler. Within GM we have Chevrolet, Pontiac,
Buick, Oldsmobile, and Cadillac. Ford assembies the Ford, Mercury,
and Lincoln. Chrysler the Plymouth, Dodge, and Chrysler. Each line
has within itself a variety of models--Regal, Monte Carlo, Mustang,
Bobcat, Fury, Dart, Continental to name a few. Locally there are
dealerships for each. There is a listed price and a price to be bargained
for. There is the basic car to which is added straight or automatic
transmissions, stereos, air conditioning, power options, and soon. Man,
there is more opportunity for structure exercising here than canever be
taken up.

Linked Structures

This is really a subject beyond the scope of this article. But because
it is one we will frequently be coming in contact with a few words must
be said on it.

Your basic text on C will most likely never mention the topic. C
Primer Plus, one of the very best, devotes about half a page. However
areally good treatment, with a “horsey” example, is given in “Advanced
C Primer ++” (see reference list at articles end).

The basicapproach is to create a series of structures. Each structure
has two primary pointers. The first relates to the previousstructure, the
second to the current. The pointers are updated as new structures are
added to the list.

Applications for linked structures are typically data files of an
initially indeterminate length. These generally require organizing the
data by some means, such as sorting, and the ability to add or delete
entries.

The Union

The union falls into a category similar to the linked structure.
Unions are set up in much the same fashion as structures. That is, there
isa union template and a union variable. The dot and pointer operators
are used as with the structure.

The unique ability of the union is the sharing of a common area of
memory. Asingle area of memory is used tostore a variety of data types.
The size of the memory allocation is based on the requirement of the
largest member of the union.

26

A union declaration is similar to that for a structure. As an example:

union two mem {
int mem one;
char mem two;

} mem attr;

which looks very much like the structure declarations in the examples.
The union lets us store different data types in the same memory space.
To acquire a firm grasp on this we need a good understanding of how
memory is allocated by our computer.

If our compiler is similar to Turbo C, Microsoft C or Power C we will
find examples of the union in the dos.h library files. Where appropriate
these express a typical declaration of

union REGS *inregs
union REGS *outregs

where the declarations are pointers to memory areas for holding
entered and returned register values.

Structures Summary

We have learned that the structure is a type to be declared much as
we declare the int or char or float. It bears some resemblance to the
array in containing a multiplicity of data. But where the array requires
all its elements to be of the same type the structure permits member
variables to be of varying types, including other structures.

We saw the structure to be particularly valuable when dealing with
lists. Declarations may be layered, beginning with the most general and
working toward the most detailed. Declarations may be totally external,
totally internal to a function, or divided.

We learned the use of two new operators unique to structures and
unions: the dot and the structure pointer. We used these operators in
programs in which variables declared in one structure were linked to
variables in another, related, structure.

We were introduced to the advanced topics of the linked structure
and the union. ®

References for the Series

There are far too many texts and articles on the basics of C for a
complete listing here. What follows are selections from my own library
I have found of particular value to my needs.

Steve Schustack, Variations In C, Microsoft Press, 1985

Al Kelley and Ira Pohl, C By Dissection, The Benjamin/Cummings
Publishing Co., Inc. 1987

Mitchell Waite, Stephen Prata, and Donald Martin, C Primer Plus
User Friendly Guide to the C Programming L.anguage, revised edition.
Howard W. Sams & Company, 1987

Stephen Prata, Advanced C Primer ++, Howard W. Sams &
Company, 1987

Stephen R. Davis, Turbo C The Art of Advanced Program Design,
Optimization, and Debugging” M & T Publishing, Inc. 1987

Power C--the High Performance C Compiler,” Mix Software, Inc.
1988

Turbo C Reference Guide, Borland International, Inc. 1987

The Computer Journal / Issue #39

¢({0)aTxa

! {oWODUT* 39p<~9poqe ‘pep<-apoqe’.u\"ny$ Jo LIeTes 8,84 UO TT3M AT Koyl)33utad
1({g)ebec~apoqe’[z]abec-opoqe ‘g Yos<-apoqe ‘1 Yoc-spoqe
\’U\"P% PU® P} ore sy pue Sy ‘USIPTTYD ITaYL.)F3urid
2{[1]9bec-apoqe ‘wouc-apoqe
\‘[0]ebe<-spoqe ‘pep<-apoqe’.u\‘Ps BT 8% 9JTA STY {py oT sy.)3F3urad
{{1TY> our3ep<-9poqe ‘wouc-Ipoqe ‘pep<-apoqe
\‘.U\"USIPTTYD Py Pue ‘sy ‘@3Ta e sey 8%.)33utad

¢ (, u\a)33urad
{++opoqe

! (swoouT *38p<-8poqe ‘pep<-apoqe’.u\"pss 3o Kxeres 8,8y uo £q 396 Keyy,)Fjurad
{([p)ebec-apoqe ‘[¢]obe<c~apoqe
\’[z]ebec-apoqe ‘¢ Yo<-spoqe ‘7 yo<-apoqe ‘I Yo<-apoqe
\/.U\"P% Pue ‘Py ‘Pt 9I¢ s§ pU® ‘sy ‘sy ‘ULIPTTYO ITeYL.)3yiurad
{{[1]ebec—apoqe ‘wowuc~apoqe
\‘lo]ebec-spoqe ‘pep<-spoqe’.u\'pPs ST 8% 23ITA STY py ST 8%.) 33utad
{{1Tyo ou*38p<-apoqe ‘wouc-spodqe ‘pep<-spoqe
\‘.U\"USIPTTY> P pue ‘sg ‘93TM e sey sy.)j3urad

{[o)suwoysy = apoqe
! (muoguTo)93nd
!{opoqex Sop wWej 30nI3s
o
BZ'TE €S VS na’wdTOQOYM W TTT W’ w9DIBH. ‘W TTUd. “000SY ‘T ‘V
Yo
6°CT'9T LE’ OV teaL, ’ UUKT. ' TITHu ‘308, ‘u9b108D. ‘00027 ‘€ ‘S

} } = [z]lswoy nOVIEwu 3onI38 ST3RIS
}
(Jurew
/x == wexboad utbed == 4/
1{ f[9]ebe jur
. {[NgT XVWIg yo Ieyo

{[NIT XVWIZ 4o Teyd
¢ [NIT XWW]T uyo ey
{[NZT XVW]wow xeyo
{[NIT XVWIpep Teyd
/x 8IN30NI8 PaIssU 4/ 18P ATTwez 3onI3s
/» @3eTduws] 8IN3ONIYS PUODIS x/ } sep uej 3onxis
o
{guwooutr 3uy psubrsun
{1Tys ou 3ut
{9zT8 3ur
/» ®3erdwey 8an3oniie 3I8IATI s/ } ATTwez 3oniys

/a IVI[D U908 ISNV »/ {.CZJEE0\a = NNDSWIOx IYD
0T NIT XYW 2uTjops
<Y*oTp3Is> spnyout

/» 8193uTod 2IN3onI38 Buren D°EXd NIS JO UOTIRTIRA Y xa

e D yXd UIS x/
pT BurasTi

f(0)aTxa

! (swoout*3eptz swoy ‘pep-Z swoy’,.u\-ngé jo Kiejes s,sy UO [T9A BATI Koyr.)yautad
{{{¢)ebe-z swoy’[z]ebe-z swoy ‘z yo+z swoy ‘I yo'7 swoy
\‘.U\"Py pu® pg oIe S3 pue S§ ‘USIPTTYS ITeyr,)Faurad
{([1)=obe-7 suwoy ‘wouw-gz swoy
\‘lolebe-z swoy ‘pep*7 swoy’.u\°ps ST s34 °2JTA STy Ipy BT 83.)F3urad
£{11y> ou-3ep-z suwoy ‘mwow-z suwoy ‘pep‘y suwoy
\‘LU\"USIPTIYD Py pue ‘s ’‘ajTm e seqy 8¢,)33utad

2 (wu\a)33urad

! (swodut*3ep* 1 suwoy ‘pep-] ewoy’.u\'ps$ Jo Kieyes 8,8y uo Aq 386 Koyl.)gaurad
{({ylebe-1 ewoy ‘([g)ebe-| suwoy
\‘l{z]ebe-1 swoy ‘g yo°1 swoy ‘z yo'{ ewoy ‘T yo*[owoy
\‘.U\"P§ Pue ‘pg ‘py 9Ie 8y pue ‘sy ‘Sy ‘USIPTTIY® ITSYL.)JFIurad
{({1)ebe"1 swoy ‘wow-{ suwoy
\‘[p)ebe-1 swoy ‘pep*] swoy’,u\°'ps 9T Sg 9ITA 8TY Ipy ST 8%,)33utad
£(TTy> ou*3ep°T swoy ‘wow] wuwoy ‘pep*[swoy
\‘ U\ USIPTTYD PY PuUe ‘8¢ ‘93Tm ®w sey ss.)3Faurad

! (gosyTo) sand
o
8Z TE‘ES VS e’ n3TOGOU ‘uTTTLw ‘wOBTOH, ‘W TTUL. ‘000SD ‘T
/+ T Qwoy STqeTIeA BUrzITRTITUT +/
} = 7 ouwoy ssp Wej 30NI3s OIS
o
6°CT/9T'LE‘OV’ wueap, ,uULT, ‘. TTTH. ‘Wo0S, ‘w@bz0@9. ‘00022 ‘€ ‘S
/» 1 swoy aTqeraeA BuTZTTeTITUT «/
} = T swoy sep wej 30NI8 OTIELS
}
(Yurew
/% == weiboxd utbeg == »/

t{ f[9])abe 3ur
{[NIT_XWHlE_uo Ieyd
INFT X¥H]Z Yo ey

/» sIequew y/ JINTT XVHIT Yo Ieyo
/» 2AN3ONIAYS &/ £ [NIT XYW]uwow Ieys
I puooas x/ {[NZT XWW]pep Ieyd
/» @In3onI3ls pe3sau y/ {39p A{Twey 300138

} sep we3 3onays

R

/+ @3erdwey 2IN3ONIYS PUCDIS 4/

/x SINUIW 4/ {swoout 3ur paubisun
/» 2IN3ONIAI8 »/ {1TY2 ou 3uT
/» A8ITI »/ !{9z18 3uTr

/» o3jerdus] aInjoniis 3I8ATI »/ } ATTwey 3jonizs

/» XeSTD us8I08 ISNY »/ {.LZTIEE0\. = NMUOSUIOx YD
0T NIT XVH SuTFop#
<Y-oTp3Is> epnjourg

/+ uoT3jex3snTiT weiboxd @anjoniis STdIITIW ¥ «»
xs D EXd ULS «/
et BumasiT

The Computer Journal / Issue #39

Shells

by Rick Charnes

Hello, I hope by now you're all having a great time with your
datestamping systems. I’d be very interested in hearing about some of
the different and wonderfully creative applications people are finding.
There certainly are a large number of utilities we in the ZCPR3 world
have that take advantage of ZSDOS-style datestamping. The majority
of these are not included on the ZSDOS distribution disk, so it comes
to mind that those poor souls not involved with a Z-Node may be
unaware of many of these. A tentative alphabetical list I made is shown
in Figure 1.

I'd like to spend the bulk of this column delving into a general
ARUNZ alias I wrote recently. As I've said time and time again, I
consider ARUNZ to be the foundation of the ZCPR3 system, the
ZCPR3 ‘language.’ It’s really not a special hot-shot alias but I hope it
gives you a general taste of some special techniques that can be used
and generally how this language works and will use it to create your own
favorite aliases.

It is something I used when writing the twelve *.VAR files for last
issue’s column. I needed to determine the day of week of the first day of
every month from 1989 through 1992. I didn’t have any printed calen-
dars near my desk to help me with this task. Then I remembered the
wonderful ZSDOS utility ZCAL which will display a full calendar of any
month. It suited my purposes perfectly. However, I quickly realized it
was getting very tedious typing out for instance:

ZCAL 1 90;ZCAL 2 90;2CAL 3 90;....ZCAL 12 92

one by one. There must be some way to automate this task!

OK, let’s conceptualize for a minute. I'll try to reproduce my
thought processes as they led to the alias’ final form. I’knew that ZCAL
had to be run over and over again, but how could I arrange it so that the
parameters fed to it could be regularly incremented so it would first
display February 1990, then March 1990, then April 1990 and so on?
What tool do we have for incrementing at the command level?

Ihadafeeling I knew how I needed todoit. There’s alittle-used, and
I daresay little-known feature of REG.COM that can increment or
decrement the values contained in the ZCPR3 registers. So we’ll
explore REG, and we’ll also delve a bit into the wonders of ZCPR3'’s

GO command. Figure 2 shows my alias STEPCAL (STEP through the
CALendar).

STEPCAL will step through the months of a year one by one upon
your pressing of the space bar. When it comes to December, it is smart
and goes to January of the next year. Let’s go through the alias.

First of all I should say that I arbitrarily chose to have the syntax be
simply ‘STEPCAL<cr>’ rather than ‘STEPCAL <parmil>
<parm2>’. Usually it’s fairly easy to code an alias to allow for either
form: parameters or no parameters. However, here we're using
ARUNZ’s ‘user input’ feature which complicates matters slightly.

Let’s see how the prompted input feature works. When Jay Sage
modified and enhanced the way this works with ARUNZ version 09L
it opened up tremendous possibilities. Any text between the $” and
symbols is echoed to the screen as a prompt. This happens before any
commands of the alias are run. You can have up to four prompts in the
form:

$’’ This will be prompt #1*$’‘’ This will be prompt #2°$’’
Prompt #3"

etc. Don’t be deceived by the “$” you see in the above line. The first «
is the termination of the previous prompt and the $” is the beginning of
the next prompt; no intervening space is necessary though I could have
put one in for clarity. The responses the user makes to these prompts
are stored in buffers which you can use later in the alias. You can
reference a single token (anything separated by a space), a single
command, an entire command line, etc. Here we will use the symbol
thatrepresents a token since that is all the user will (presumably!) enter.
We have two prompts in the alias. The symbol to represent the user’s
response to the first prompt is $’e1 and that to the second prompt with
$’e2. So with that in mind, let’s see what we have.
The first thing that happens is the prompt:

YEAR to begin (last two digits only)
{or <CR> to resume:)

appears on the screen. Notice the way we get a part of a prompt to
appear on a new line is by putting ‘*“m”j’ in our prompt text. For this
example we’ll say we want to start at February 1990 so we enter '90.’

STEPCAL $"YEAR to begin (last two digits only) m“j(or <CR> to

and “nu $'e2;reg sl $'el q;req 80 $'e2 q;zif;
echo f¥>irst, this month's display...;zcal;/step2

STEP2 $zfi;go $rt00 $rt0l;if in “[)[<SP> ¥>or 3<<CR> ¥>to
advance, ‘'n‘' to quit] "[(;if reg 0 < 12;reg8000 p0 q;
else;reg8000 80 1 q;reg8000 pl q;fi; $0;fi

Fiqure 2: Alias to step through the calendar.

resume:) “$*°m"jMONTH to begin (or <CR>): "if “nu $'el; <<

Any response such as ‘89’ or ‘92’ or ‘74’ would be
<< appropriate as well. Then we hit <CR> and:

<< MONTH to begin (or <CR>):

appears as the second prompt. For our purposes
we enter 2. (We must use the ordinal number
rather than the name of the month.) We hit
<CR> and the actual commands start. Before I
explain what happens, let me first note that the

<<
<<

28

The Computer Journal / #39

APPEND Concatenate files like PIP, but inserts the date of

concatenation as a line of text between each file.

Allows for display, manipulation and other use of

several date-related parameters in macro command

scripts; $dd is the current date, $dm the month, $dy the
year $dh the hour, $dn the minute, etc. Extremely useful
and flexible. For me the most powerful of them all.

COPY For many, the standard copy utility. Preserves all date
information. Very sophisticated date handling; if
destination file already exists,~ COPY compares
datestamps and asks for further instructions
accordingly.

CRUNCH23D With the datestamping version of CRUNCH, we can

embed the date stamps in the compressed file itself (it's

not dependent on the directory entry) and we can thus
transfer datestamp information via modem.

Like NSWEEP with datestamping features added.

Displays create, access and modify date of all files. Can

copy or archive files by date using ‘=', ‘<’ or >’

operators (“'copy all files modified in the last two weeks
of January”). Can manually change a file’s datestamp.

Very feature-laden program.

DBASE Yep, we have a patch for this venerable program. No
longer will you have to enter the date when the program
ioads as you've been doing for years. ZSDOS will do it
for you.

DIFF Compares files by date or otherwise. Very sophisticated.
FILEDATE Perhaps the most exciting of them all. A directory utility
that not only displays the creation, access and
modification dates of files in a directory, but is sensitive
to and can sort by date. Options to sort from most recent
files to oldest, oldest to newest, list only files modified or
created today, only modified/created since a given date,
etc. It truly opens up a whole new world of computing.

Preserves a file's datestamp (create, access and modify)

upon extraction from a LBR). LOG Perfect way to keep

track of how long you spend on each “type"” of task on
your computer. Will "log” time spent on each of several
self-chosen or given categories into a file for later
viewing and displaying. Excellent for record-keeping for

IRS.

LPUT Preserves a file's datestamp upon insertion into a LBR.

LSH Our new standard command history shell by Rob

Friefeld. Very nice to see its display of the time at its

command prompt.

As of early April still in beta-testing but may be out by

the time you read this. Complete floppy or hard disk

cataloging system; ZSDOS version of Irv Hoff's classics.

Allows user to display to the screen, for example, all files

in one’s collection of floppy disks created before July

1988, or during the month December, 1987, etc. When

ARUNZ

DATSWEEP

LBREXT

MCAT, XCAT

used normally, will display files' datestamps along with
their names.

MCOPY Copy program allowing simultaneous copy of multiple
unrelated files using filelist feature of ZCPR3.
MEXPLUS Scripts can display, wait for and measure time. |

consider my greatest programming feat to be the
MEXPLUS script | have mentioned previously in this
column to log on to PCP Pursuit. ZCPR3's shell variable
system then keeps a non-volatile time log of monthly
use. The script can tell you how long you have been on
a BBS, how long you were on the last logged BBS, the
current time, how long you have been attempting to
connect to PCP, how long was the last attempt, etc.

NT Loads and saves virtually instantly, Rob Friefeld's NT is
a quick “note"-maker and mini-editor. it begins all files
with the current date and time at the top.

PPIP Copy program, sensitive to archive bit if desired; always
: preserves date of source to destination.

PRINT Prints date and time at top of each printed page.

SDD Similar to FILEDATE, but more limited. Only displays

filedates, cannot sort by date.

™ Displays current date and time on screen.

UNCRUNCH Uncompresses the file and restores its datestamp.

WAIT Will “wait” until a specific time before performing a

given operation. Useful for ZEX scripts and other
multiple-command line operations.

ZCAL With no parameters, displays a calendar of the current
month with the current day highlighted. With parameters
it will display a calendar of any month in the 20th
century.

ZDE For me the granddaddy of them all. The only
wordprocessor that supports ZSDOS. ZDE is the
ZCPR3/ZSDOS version of VDE. Automatically preserves
a file's creation date after editing.
Extraordinary file management utility shell. Like
NSWEEP taken to the 100th power. Displays current
time on the screen, preserves datestamp of copied or
“moved” files.
Another file utility menu/shell, displays current time on
screen, etc.
Absolutely essential when using editors and word-
processing programs other than ZDE. Without this
program, users of all other editors will find that after
working on a file its ‘creation date’ has suddenly
become today's date, even if they started working on
the file months ago! ZSVSTAMP stores this stamp
information temporarily in a buffer at load-up, then re-
imprints it onto file upon exit. ZXD Another directory
program. Good for general use but really shines for
those using DOSDISK or P2DOS type datestamping.

ZFILER

ZMANAGER

ZSVSTAMP

Figure 1: List of ZGPR3 utilities.

eagle-ecyed command buffer limit watchers among you may be wonder-
ing, “Isn’t he living rather dangerously with that impolitely long first
prompt? With our 200-character limit, he should be conserving space
for the actual command part of the alias! As a matter of fact, looking at
this alias with my editor I see it stretches out well over 210 characters
already! How can he possibly expect it to run?”

Ah, have no fear, O sharp-eyed one. For there is a crucial aspect of

 ARUNZ’s prompted-input feature that bears considering: the prompt

itself is not placed into the command buffer at all! Why should it -- it’s
not a command! It is simply text that ARUNZ writes directly to the
screen. As far as I can gather the command processor is not involved in
the process at all. It is similar to ZEX’s ** < text " >’ feature -- it is direct
console output. So do not worry about long prompts -- those who have

The Computer Journal / #39

seen my MAKLIB12 alias (available at finer Z-Nodes everywhere)
knowwhat kinds of tremendously sophisticated and attractive and L-O-
N-G things you can do with prompts.

I believe there is no theoretical limit to the allowed length of a
prompt string, so have all the fun you want with video codes, cursor
positioning, whatever -- to be creative is the most important thing. Irun
into a practical limit, however, that has nothing to do with ARUNZ.
Turns out that VDE, which is what I use todo all my alias work, can not
display text past column 255. I know, I know -- you're thinking someone
would have to be crazy to write anything that long, but if you’re not a
little bit crazy you don’t belong using something like ZCPR3. Believe
me, I have run into this limit on several occasions when doing really
fancy stuff with user prompts. I either compromise or -- go to Word-

29

Star.

In any case, prompted text is not put into the command buffer and
does not count towards our magic 200-character figure beyond which
we must not venture.

Back to the alias. Next we check to make sure anything was entered
intoresponse to the prompts; this will become important later as we will
see. ‘IF "NU $’E1'means ‘if the response to prompt number 1 was not
anull response’ -- in other words, if something was indeed entered. We
check the same for prompt number 2, and then we come to the part
where we set registers -- always a favorite activity of mine. As I have said
before, one of the beautiful things of ZCPR3 is its ability to carry
messages from program to program, and those 16 little bytes starting at
30 bytes after the start of the message buffer otherwise known as
registers are instrumental in that task. Here we use the REG command
toset register 1(°S1’) to whatever was entered into response to the first
prompt. The trailing ‘q’ indicates ‘quiet mode’ and means that nothing
will be displayed tothe screen. Since we entered ‘90’ register 1 will be set
to that value. Note that any value up to 255’ is possible.

Since we entered ‘2’ in response to the second prompt, the next
command sets register 0 to the value ‘2. ‘ZIF terminates the IF testing
and restores the flow state to 0.

Now we come to one of the unique parts of the alias. In writing this
initially I was reloading ZCAL from disk each time. Then I remem-
bered about our wonderful GO command, which reloads whatever is at
100h in memory, the place where programs normally execute. But then
I had a problem: if I was going to use the GO command to run it most
of the time, how could I get it to load in the first place? I solved this by
making two aliases, the first as a ‘dummy load’ to place ZCAL at 100h
in memory in the first place, and the second to run it the majority of
times with GO.

So I chose to display the current month’s calendar (‘ZCAL<cr>’
with no parameters) with a ECHO status message io that effect, and
then move on to STEP2, the second alias.

First we have a ‘$z’ at the beginning of the second alias which tells
ARUNZ to flush any commands left in the command buffer when the
alias runs. I like to do this just in case there is any danger of overflowing
thie buffer with too many characters (always remember that we have a
limit of 200). When we see later how we repeat STEP2 over and over
again, it will become urgent to flush the buffer each time or we will
quickly get an OVFL message. Next we flush the IFlevel -- which we will
be setting later -- with ‘FI. Now we come to our command ‘GO $rt00
$rt01°. Remember that GO will rerun whatever program is residing at
100h, so we have one important consideration here. Since we are
running a new alias, didn’t we just run ARUNZ? In that case, wouldn’t
that get rerun instead of ZCAL?

Yes, it would --if ARUNZ was indeed run at 100h. But this was the
whole purpose of the development of type-3 and type-4 programs. We
can now run programs at locations in memory other than 100h. So in
order for this alias to work you must make sure to have cither the type-
3 version of ARUNZ which runs at 8000h or the type-4 which runs at
an address determined at run-time by the configuration of your own
system.

The symbols ‘$rt00’ and ‘$rt01 translate into the values held in
registers 0 and 1respectively. Note that Jay Sage, ARUNZ’ author, has
given us a great deal of flexibility in determining how these figures will
display. The letter ‘t’ after the ‘r’ indicates that we want them to display
as ‘T)wo’ decimal digits. We also could have chosen ‘0’ for O)ne, ‘h’ for
H)exor ‘f for F)loating decimal. Remembering the values to which we
set registers 0 and 1 in the previous alias, our command resolves to

GO 02 90

Aswe saw, GO will re-load ZCAL and hence our command will be:

2CAL 02 90

which of course displays the calendar for February 1990.

OK, now we come to the part where we want to increment the first
ZCAI parameter. First, however, we must consider that perhaps at this
point the user wants to abort the alias. A good way to do this is with the
IF INPUT command.

IF IN <SP> OR <CR> TO ADVANCE, ‘N’ TO QUIT

works perfectly. A touch of the SPACE key or <CR> are both
equivalent to entering “Y’ and will set the IF level to true and continue
the alias, while entering ‘N’ will set the IF level to false and skip all the
commands until ELSE or FI, which in our case effectively terminates
the alias.

Now, let’s assume we have entered <SP> or <CR> and set the IF
level to true. If register O is less than 12 (at this point it is ‘2") we then
increment register 0. In our case it would set to ‘3’. The ‘p0’ parameter
to REG.COM does that, or we can alternately use the syntax ‘+0°.
Notice, however, that I am using the type-3 version of REG.COM
running in memory at 8000h which I have renamed REG8000.COM.
For reasons that will become apparent shortly, we cannot use the
version that runs at 100h. The resident REG contained within an RCP
would, however, be fine. Again, the IF level terminates and the ‘$0°
symbol resolves into the name of our alias, ‘STEP2,” and the alias runs
again.

Incidentally, it’s a good idea to use the symbol ‘$0” in your aliases
whenyou want them to repeat, rather than the actual name. There are
several reasons for this. You might later change the name of the alias
and forget that you have included this command to re-invoke it as part
of the command sequence. If you had previously used its actual name
you would soon find yourself looking at your error handler and scratch-
ing your head. Secondly, when you use ARUNZ’s ‘muitiple-name’
feature the ‘80’ symbol is indispensable as it can cover for whatever
particular name you enter from the command line. For instance, we
could have entered:

STEP,CAL=CAL,STEP $’’YEAR to begin....

as the beginning of our alias. We could then have entered ‘STEP’,
‘STEPCAL’, ‘CAL’, ‘CALSTEP’ or any of several other names at the
command prompt for the name of our alias and all would have been
properly re-executed by our ‘$0’ symbol. Lastly, using ‘$0° saves a
couple of bytes of disk space in our ALIAS.CMD file and we’re slowly
learning how important it is for all of us to be ecological.

Looking at the beginning of the alias and the GO command, we can
now understand why it was necessary to use either the RCP version of
REG or the version that loaded at 8000h. With the GO command we
now want ZCAL to run again. If, however, we had used a 100h version
of REG, it would be REG that would re-execute with the GO com-
mand, since GO executes whatever resides in memory at 100h. Every-
thing involved in this alias except for ZCAL should be either memory-
resident running at 8000h such as IF.COM,REG.COM and ARUNZ
itself. If so, when we come back to the beginning of the alias and the GO
command, ZCAL at 100h will still be undisturbed and it will be that
program that is executed by GO.

So now our first command with GO runs the command line
ZCAL 03 90

and we are displayed the calendar for March 1990. We are again
presented with the “<SP> or <CR> toadvance, ‘n’ to quit” message.
Wewill hit the SPACE bar, register 0 will be incremented again, and the

The Computer Journal / #39

alias will again re-execute. Each time we hit <CR> or <SP> register
0 will increment and we will be presented with the next month’s
calendar, until....register 0 is up to 12, meaning it’s December. In this
case we want ZCAL to display January of 1991. No problem. In that
case, when we come to the command in the alias, ‘TF REG 0 < 12’ the
flowstate will be FALSE and we will skipto the commands immediately
followingthe ‘ELSE’. Here, REG.COM willset register O back to 1, and
something special will happen. Register 1, presently containing the
value of ‘90’, will now be incremented to 91. When the alias repeats, the

* GO command at the beginning will now be running:

ZCAL 01 91

and we can go from January through December once again, always
relying on register O for the ordinal value of the month and register 1 for
the year.

‘When we want to exit from this ‘loop,” we simply hit ‘n’ at the prompt

"and the IF level is returned to 0 and we exit the alias. A nice thing of this

technique is that if later we want to repeat the calendar-stepping, our
system ‘remembers’ where we were when we left off, since we are
relying on the registers to store information. In that case, we respond
with two <CR >’s at the first two prompts. Then the IF level after the
two first ‘IF “NU...’ commands will be FALSE and we will not set the
registers to any particular value but rather leave them where they are.

I really enjoy using the registers in this fashion. I also like this
technique of doing one ‘dummy’ load of the crucial program in ques-
tion, ZCAL, in order to perform later rapid memory-based re-invoca-
tions using the GO command. It’s particularly fascinating to note that
you can perform several other commands later in the alias but still have
the GO re-execute ZCAL as long as all of the other commands are
either memory resident or type-3 transients running at 8000h.

Debugging Allases

Two tips for debugging aliases: (1) Put ‘MU3 $+E0100’ as the first
command in your alias when you’re testing it. (Make sure it’s the type-
3 version of MU312.COM running at 8000h.) When your alias runs,
MU3 will be the first program to load. Its parameter ‘§+€0100’ trans-

- lates into 100h past the beginning of your environment descriptor and

it will be this address that MU3 will display as its first screen. The
ZCPR3 command buffer begins at 0104 bytes past the environment
descriptor, so starting at the fourth byte past the beginning of MU3’s
display you will see a visual representation of your alias is it is about to
run. You may count 200 bytes past this point and that will be your limit.
In this way you'll be able to ‘see’ all resolutions of all ARUNZ symbols
before they actually run; this has been extremely helpful to me when
working on complex aliases.

(2) When you want to print them out to get a look at them ordinary
word processors are generally no help. Quite often, your lines inside
ALIAS.CMD are 150+ characters in length. Solution: use the classic
ZCPR3 utility PRINT.COM. There is a feature that is not even
documented in our erstwhile bible Richard Conn’s ZCPR3: The Man-
ual that is very helpful for printing out files containing long lines of text.
Whenever PRINT.COM finds a line greater than the TCAP-defined
printer width it will print as much of the line that fits up to this point. It
will then skip a single space and insert the two characters ‘< <* imme-
diately to the right of the line. These characters are inserted by
PRINT.COM indicating that more of the lin¢ is to follow. It thenwraps
to the next physical line on the printer page and continues printing the
rest of our line. It will ‘break’ your line into as many physical lines as
necessary. Lines of over 200 characters in length are easily printed in
this fashion and are clear and readabie, being broken up on the page by
PRINT.COM.

For additional clarity and especially when printing out more than

The Computer Journal / #39

one alias, I also recommend using PRINT.COM’s ‘L’ option (‘PRINT
ALIAS.CMD L"). This will number your aliases and indent all ‘broken-
up’ lines just slightly in from the first, providing a wonderful degree of
visual ease and a great deal of help in writing and debugging long multi-
alias sequences.

I like writing aliases.

Conclusions

Thought of the month: why don’t word processors come with an
internal command to move the cursor to the last letter of the current
word? It seems I want to do this almost as much as I go the first letter
in the next word.

Some advertisements for recent contributions to our ZCPR3 public
domain are in order. We have a lot of nice work finally being done with
the straight-line graphics about which I've been ranting recently. Hal
Bower, who has been doing a yeoman'’s jobin our community for some
time now, has put together a new extended TCAP that takes advantage
of this capability of many terminals. If your terminal has graphics
character capability, pay your local Z-Node a visit and pick up his
TCAP-HB4.LBR. He’s also rewritten the venerable and classic
GRDEMO to use his new TCAP, which for years was the Z-System
world’s most sophisticated demonstration of graphics capability.
GRDEMO s nowbeing challenged by ... Eugene Nolan of the Philadel-
phia area who has done a wonderful job putting together a library and
demo program of some very sophisticated graphics windowing routines
that also rely on Hal’s new TCAP. Look for Gene’s SWINDO15.LBR
onthe Z-Nodes ... Edward Barry took pity on me (bless his heart) with
my complex *.VAR files I described two columns ago and wrote
DW.COM. DayofWeek uses ZSDOS calls to calculate the day of week
and sets ZCPR3 register 0 to 1 through 7 for seven days of the week.
This greatly simplifies one’s *. VAR files. Pick up Edward’s DW.LBR at
quality Z-Nodes everywhere ... Greg Miner of Nova Scotia has filled a
real need. His LOCNDO (LOCate ‘N’ DO -- cute) is something that’s
been crying to be written. How many times have you run FF.COM to
look for a file, then when it’s found you curse at having to type all the
extra keystrokes to actually do something with the program you’ve just
found? I mean computers are supposed to make life easier for you. For
instance, suppose you're not sure on which directory you left that article
you started for The Computer Journal. You type ‘FF TCJ.ART and
FF.COM finds it. Then (yawn) you have to enter ‘VDE TCJ.ART
again to actually look at it. What a waste. Now you need only enter:

LOCNDO TCJ.ART VDE $

LOCNDO will search your disk until it finds TCJ.ART. It will then
substitute “TCJ.ART for the ‘$’ in its command line and run VDE on
it -- all in a single command. Very nice and very simpie. Thanks, Greg.

That’llabout do it for this bi-month. Be sure towrite with comments
and suggestions. Z you next time. @

31

Real Computing
The National Semiconductor NS32032
by Richard Rodman

Once upon a time, there was a man
who lived near a lake wherein dwelled a
fearsome crocodile. The man liked to fish
in the lake, but was afraid of the crocodile.
So, he made a deal with the crocodile.
Before fishing, he would bring a delicious
croissant and throw it into the lake. The
crocodile would eat it, swim to the other
side of the lake and leave the man alone.

For years, the man enjoyed fishing
peacefully at the lake. But one day, the
crocodile didn’t come up to retrieve the
croissant. The man wondered, but began
fishing anyway. Suddenly, the crocodile bit
him in the seat of his pants. “Why”, he
cried, “your croissant is in the lake, as
usual!”

“Yes,” admitted the crocodile, “but
I’'m cutting down on sweets.”

The moral of this story is that the
underlying architecture always comes up
to bite you. If you're programming some
kind of segmented, memory-modeled
processor, you can try to hide from it with
C all you like, but sooner or later, you’re
going to find its teeth firmly embedded in
your posterior. '

The 32532 microprocessor

The 32532 is the current top-of-the-
line of the NS32 family. It’s completely
software-compatible with the other mem-
bers of the family, but has a number of
improvements.

First, the MMU has been moved on-
chip. The MMU, as far as address transla-
tion is concerned, is identical to the 32382
MMU. It uses 4 kilobyte pages and can
address up to 4 gigabytes. The breakpoint
logic has been changed again, however.
The control bits have been taken out of
the Master Control Register and put into
a special Debug Control Register.

Second, the 32532 has a four-stage
internal instruction pipeline which allows
for overlapped execution of instructions.

32

In particular, operands for the next one or
two instructions can be fetched while the
current instruction is processed. The pipe-
line includes logic for doing “branch pre-
diction.” Since the future state of the ma-
chine for conditional branches isn’t
known, backward conditional branches
are predicted as occurring, and forward
ones as not occurring. This matches statis-
tical measurements on actual code. An-
other pipeline-related issue is memory-
mapped I/O. To solve this problem, the
16-megabyte region from FF000000 to
FFFFFFFF has been dedicated for mem-
ory-mapped I/O, and the pipeline logic
will insure that the reads and writes will
take place in the order coded.

Third, there are on-chip caches: a 512-
byte instruction cache, and a 1024-byte
data cache. This is in addition to the in-
struction pipeline. An I/O decode signal is
provided so that I/O references are not
cached. Also, a new instruction, CINV
(cache invalidate) is provided so that ei-
ther single entries or entire caches can be
invalidated, for example, when the page
tables are changed during a context
switch.

Fourth, five new bits have been de-
fined in the CFG register, mainly for con-
trolling the operation of the memory
caching.

The 32532 incorporates all the fea-
tures of the 32332, such as the dynamic
bus sizing and burst-mode memory ac-
cess. The chip is 1.6 inches square and sits
in a 175-pin PGA socket. It is available in
20-, 25- and 30-MHz versions. It runs on
a single clock--the TCU chip is not re-
quired.

Simply put, the 32532 is the current
apex of CISC MOS microprocessor de-
sign. How fast is it? I hesitate to cite
benchmarks, because they have been
hopelessly compromised by the RISC
hoopla, but National says the chip can
compute 10 real VAX (CISC) MIPS.

How can you get your hands on this
CPU? There are actually a number of
new options. First, National has a two-
board VME board set that’ll set you back
about $10,000. Heurikon has been adver-
tising their VME board under the banner
“Ten MIPS and No RISC” for around
$4,000. There are two PC coprocessor
boards out, one from Opus and one from
Aeon Technologies, but they’re not for
hobbyists, either. Lastly, there’s the 32532
Designer’s Kit.

The 32532 Designer’s Kit

I found out in late January that there
was a special offer on the 32532 De-
signer’s Kit for $532, due to end January
31. It wasn’t a time for thinking, it was a
time for action.

So, I became the proud possessor of
the NSV-532DK. What comes with this
kit? The following:

® A NS32532U-25, 25MHz proces-
sor chip, and a 175-pin, machined-pin pin-
grid-array socket for it

® A NS32202N-10, 10MHz ICU (in-
terrupt controlier chip).

¢ Two PROMs containing three
ROM monitors: TDS, MON-32 and a
RAMiess monitor.

® A PAL chip and a digital delay de-
vice.

® A bare, 4-layer, silk-screened PC
board (11"x 11-1/4")

® Secveral books, including manuals
on the monitors, the Series 32000 Pro-
grammer’s Reference Manual by Colin
Hunter, data sheets on the 32532 and the
32381, schematics and instructions.

® A diskette containing one file,
TDSCOM.COM, a very crude down-
loader program for the TDS monitor.

Note that there are NOT enough parts
here to build the computer. You need
about 256K of CY7166 16Kx4 bipolar
RAM chips, pius about $150-$200 worth

The Computer Journal / #39

of other sockets, chips, capacitors, SIP re-
sistors, and connectors. The board can be
populated with a Weitek math chip and
32580 or with a 32381 floating-point unit.
You also get a coupon for a discount on a
32381.

Populating the board will resuit in a
simple computer with 256K bytes of high-

. speed RAM, two serial ports, and some

parallel ports.

Programmer’s Reference
Manuals

I have been remiss in not taking time
to discuss data books. Let’s compare

~ three leading databooks on popular

MiCroprocessors:

o Intel 80386 Programmer’s Refer-
ence Manual, Anonymous. About 390
pages. Pages on instructions: 174. Ex-
amples: 7. No index.

® Motorola M68000 16/32-Bit Micro-
processor Programmer’s Reference Man-
ual, Anonymous. 218 pages. Pages on in-
structions: 107. Examples: None. No in-
dex.

® National Series 32000 Program-
mer’s Reference Manual, by Colin Hunter.
About 340 pages. Pages on instructions:
217. Brief examples of each instruction
and addressing mode. 6-page index.

By any objective measure, the Na-
tional book is clearly superior. But then,
we wouldn’t judge a processor by its data
book, would we? Or, perhaps, a com-

. pany’s concern for its customers?

Just as a test, give me, in 5 minutes or
less, an example of an 80386 BTR in-
struction, complete with binary encoding.

The 32CG16 microprocessor

The 32CG16 is a stripped-down ver-
sion of the 32016 with high-performance
graphics commands added into the in-
struction set. It is intended as a dedicated
graphics controller or coprocessor, such
as for a laser printer or video-display
board.

What instructions have been added?
BITBLT (bit-block transfer), with AND,
OR, and XOR options; EXTBLT, an
“external BITBLT”, which uses an exter-
nal BITBLT processing unit (BPU);
BITWT, bit word transfer, for purposes
such as text generation; MOVMP;, a pat-
tern-fill instruction; and bit-string instruc-
tions, TBITS and SBITS.

Contrary to what you may have heard,
it is not necessary to use National’s graph-
ics chip set with the 32CG16. The only
instruction which makes use of it is

The Computer Journal / #39

EXTBLT.

Because the 32CG16 is intended as a
dedicated device, it doesn’t have logic for
supporting the MMU chip. It can, how-
ever, be used with the 32081 floating-
point chip. It has an on-chip clock oscilla-
tor (so, again, the TCU is not needed)
and comes in a 68-pin PLCC package.

The 32CG16 is compelling because it
gives you the high performance of a spe-
cialized graphics controller such as the
34010, yet is lower in cost, much easier to
program, and has lots of development
tools (any NS32 compilers or assemblers
can be used).

I understand that the chip was devel-
oped in association with Canon Corp. as
part of a laser printer controller chip set.
However, by taking this part, an ICU, 4
video RAMs and a video DAC, it should
be pretty easy to construct a nice video
graphics coprocessor. The ICU would be
set up to interrupt the processor at hori-
zontal and vertical sync times. At these
times, the processor would sequence logic
to generate the correct sync and burst sig-
nals, and issue the “load row” strobe to
the video RAMs.

Next time

I'm going to keep my options open for
the next column. Maybe I'll have a status
report on the 532 system, or on the free
OS, or some new hardware that’s coming
out, or some great deals on older hard-
ware. Until then, watch out for crocodiles!

Where to write or call

Aeon Technologies
90 S Wadsworth Boulevard
Lakewood CO 80226

Heurikon Corp.
3201 Latham Drive
Madison WI 53713

National Semiconductor Corp.
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara CA 95052-8090

Opus Systems inc.

20863 Stevens Creek Boulevard
Building 400
Cupertino CA 95014
Richard Rodman
8329 Ivy Glen Court
Manassas VA 22110
BBS: 703-330-9049

MOVING?

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Apple 11, 11+, IIc, Ile, Lisa, Macin-
tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-
per, BackGrounder ii, DosDisk; Plu*Per-
fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase II, dBase III,
dBase III Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.
IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. 780, Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc-
currence.

News

Interactive Text

I have been working with a very interest-
ing product from Patch Panel Software
called “Figment--the Imagination Proces-
sor.” It is interactive story development
software which provides a complete envi-
ronment for developing, debugging, and
publishing interactive fiction.

Figment provides window-managed
play-back display, object-oriented style of
development, rule-based logic program-
ming, natural language command struc-
ture, and context sensitive editing process.
There is a game map and a player map, and
revision 2.30 adds user definable attributes,
user defineable link types with values, char-
acter profiles, and character viewpoints,
and overlays.

The story logic represents a knowledge
base defining appropriate behavior for dif-
ferent situations so Figment can be called a
“Situation Modeler.” It can be used by law-
yers, for example, to create a courtroom
simulator; by salespersons to produce a
role-playing sales trainer; by writers to
model character and plot development;
and by educators as a creativity tool to
teach logic development. Stories developed
with Figment might be simple stories with
multiple endings depending on player
choices or they can be full role-playing fic-
tion games.

Writing interactive games or stories is a
great way to relax after a hard day of pro-
gramming--it’s much better than just play-
ing someone else’s game. There is also a
market for stories, games, or roie playing
training programs. I recommend Figment
for either entertainment or for developing
salable products.

Figment runs on IBM-PC and com-
patibles with DOS 2.01 or later, and 384K
of RAM (640K advisable). No special dis-
play adapter is required. Figment is not
copy protected, and is available for $95
from Patch Panel Software, 11590 Semi-
nole Bivd., Seminole, FL 34648, phone
(800) 543-0731.

dBXL Diamond Release 1.2d
My favorite DBMS has been revised to

include even more options. One of the
most significant changes to me is that they
have improved the SET RELATION com-
mand so that it is now possible to SET.
more than one RELATION from the same
work area. This will be very useful for an
application on which I am now working.

Some of the other new features are:
SET COMPATIBLE determines whether
the maximum number of fields in a data-
base is 128 or 512 (the previous version was
limited to 128 fields); SET SWAPPING
specifies whether your dBXL work session
is swapped out of memory when you use
the DOS, RUN, and ! commands; SET
KEY specifies a program or procedure
dBXL executes when you press a specified
key; REPLACE MEMO replaces the text
of a specified Memo field with the contents
of a specified Array variable and STORE
MEMO stores the text of a specified Memo
field into a specified Array variable;
ALIJAS() returns the alias of a specified
work area, ELAPSEDY() returns the num-
ber of seconds elapsed between two speci-
fied time expressions; FCOUNT() returns
the number of fields in a database; IN-
DEXKEY() returns the key expression of
an index; INDEXNAME() returns the file-
name of an index; LENNUM() returns the
display length of a Numeric expression;
MEMOLINE() returns a line of text from
a specified Memo field; MLCOUNTY() re-
turns the number of lines of text in a speci-
fied Memo field; READVAL() returns the
value of the current @..GET memory
variable or field; and UPDATED() indi-
cates whether and @...GET memory vari-
ables or fields were edited during the last
READ, EDIT, CHANGE, APPEND, IN-
SERT, or BROWSE. This is just a partial
list, there are more.

These enhancements, combined with
the features which dBXL already had,
make it a very nice development tool--it’s
the one I grab when I need a database for
vendors, subscribers, etc. It supports most
dBASE code, but adds the enhancements
which provide much more power. There is
a dBXL/LAN version, and a companion
Quicksilver compiler which is also available
in a UNIX version.

dBXL is available for $249 from
WordTech Systems, Inc., 21 Altarinda
Road, Orinda, CA 94563, phone (415)
254-0288.

Database Reference Books

One of the reasons why I choose
dBASE-like tools such as dBXL is that
there is a great wealth of reference mate-
rial. T need this material because I am still
learning the intricacies of data and infor-
mation management. I don’t need books
which just repeat the command and func-
tion definitions found in the manuals, I
need guidance on what it it that the system
should do. As stated in Expert dBASE IIT
Plus “Most published discussions of
dBASE programming begin and end with
how to put commands together in a com-
mand file. That’s important, of course, but
it’s a littie like teaching a house builder how
to hammer nails into a board without
teaching what board to nail, or where, or
why.”

I find that I am relying on three books
for most of my reference, and was sur-
prised when I noticed that they are all pub-
lished by the same publisher, SYBEX.

The three books are:

Expert dBASE III Plus, by Judd Rob-
bins and Ken Braly. This book provides a
lot of detail on what it is that a database
should do, and then shows how to do it with
dBASE.

Mastering dBASE III Plus--A Struc-
tured Approach by Carl Townsend. This
book uses an accounting database for its
example, and includes much information
on design, and implementation.

dBASE III Plus Programmer’s Refer-
ence Guide by Alan Simpson. This is a large
book, over 1,000 pages, and is the one I use
to get the full details of the dBASE lan-
guage. The commands and functions are
grouped by type instead of alphabetically,
and there is supporting text to fully explain
the operations and options.

I recommend these books, and since my
top three choices are from SYBEX, I'll cer-
tainly check them first for other needed
books. @

The Computer Journal / #39

e
aare L *
axest

tve com?'

Issue Number 1:

¢ RS-232 interface Part One

* Telecomputing with the Apple Il

s Beginner's Column: Getting Started
* Buiidan‘“’Epram"

Issue Number 2:

{ssue Number 18:

* Parallel Interface for Apple Il Game Port
e The Hacker's MAC: A Letter from Lee
Felsenstain

* S$-100 Graphics Screen Dump

e The L5-100 Disk Simulator Kit

» BASE: Part Six

* interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

Issue Number 18:

* File Transfer Programs for CP/M

* RS-232interface Part Two

e Build Hardware Print Spooler: Part 1

* Review of Floppy Disk Formats

* Sending Morse Code with an Apple il

* Beginner’s Column: Basic Concepts and
Formulas

Issue Number 3:

e Add an 8087 Math Chip to Your Dual
Processor Board

« Build an A/D Converter for Apple ||

* Modems for Micros

* The CP/M Operating System

* Build Hardware Print Spooler: Part 2

issue Number 4:

* Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

* Making the CP/M User Function More
Useful

» Build Hardware Print Spooler: Part 3

* Beginner's Column: Power Supply
Design

Issue Number 6:

* Build High Resolution S-100 Graphics
Board: Part 1

* System Integration, Part 1: Selecting
System Components

* Optronics, Part 3: Fiber Optics

* Controlting DC Motors

* Multi-User: Local Area Networks

* DC Motor Applications

Issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

* BASE: Part Four

* Using the S-100 Bus and the 68008 CPU
* Interfacing Tips & Troubles: Build a
“"Jellybean” Logic-to-RS232 Converter

The Computer Journal

* Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

* BASE: Part Seven

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

* Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

* Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

* Soldering and Other Strange Tales

* Build a S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

¢ Extending Turbo Pascal: Customize with
Procedures and Functions

¢ Unsoldering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Issue Number 22:

*» NEW-DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
* The SCSI Interface: Introductory
Column

* Using Turbo Pascal ISAM Files

* The AMPRO Little Board Column

Issue Number 23:

¢ C Column: Flow Control & Program
Structure

* The Z Column: Getting Started with
Directories & User Areas

* The SCSlI Interface: introduction to SCSI
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

¢ INDEXER: Turbo Pascal Program to
Create Index

* The AMPRO Little Board Column

THE COMPUTER JOURNAL

Back Issues

Issue Number 24:

* Selecting and Building a System

e The SCSI interface: SCS! Command
Protocol

* |ntroduction to Assembly Code for CP/M
e The C Column: Software Text Filters

* AMPRO 186 Column: installing MS-DOS
Software

e The ZColumn

¢ NEW-DOS: The CCP Internal Commands
* ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Littie Board

Issue Number 25:

* Repairing & Modifying Printed Circuits
e Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Buiiding a SCSI Adapter

New-Dos: CCP internal Commands
Ampro '186 Networking with SuperDUO
ZSIG Column

Issue Number 26:

¢ Bus Systems: Selecting a System Bus

¢ Using the SB180 Real Time Clock

* The SCSI Interface: Software for the
SCS| Adapter

¢ [nside AMPRO Computers

* NEW-DOS: The CCP Commands Con-
tinued

» ZSIG Corner

* Affordable C Compilers

* Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

« 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

s The Art of Source Code Generation:
Disassembling Z-80 Software

* Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

e The C Column: A Graphics Primitive
Package

s The Hitachi HD64180: New Life for 8-bit
Systems

® ZSIG Corner: Command Line Generators
and Aliases

s A Tutor Program for Forth: Writing a For-
th Tutor in Forth

* Disk Parameters: Moditying The CP/M
Disk Parameter Block for Foreign Disk
Formats

issue Number 28:

* Starting your Own BBS

e Build an A/D Converter for the Ampro
L.B.» HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

¢ Using SCSI for Real Time Control

* Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

* Choosing a Language for Machine Con-

trol

Issue Number 298:

* Better Sottware Filter Design

* MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

¢ 68000: Why use a new OS and the 680007
¢ Detecting the 8087 Math Chip

* Fioppy Disk Track Structure

* The ZCPR3 Corner

Issue Number 30:

¢ Double Density Floppy Controller

e ZCPR3IOP for the Ampro L.B.

* 3200 Hacker's Language

* MDISK: 1 Meg RAM disk for Ampro LB,
part2

* Non-Preemptive Multitasking

¢ Software Timers for the 68000

* Liltiput Z-Node

* The ZCPR3 Corner

* The CP/M Corner

Issue Number 31:

* Using SCSi for Generalized I/0

* Communicating with Floppy Disks: Disk
parameters and their variations.

e XBIOS: A replacement BIOS for the
SB180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

e Language Devetopment: Automatic
generation of parsers for interactive
systems.

* Designing Operating Systems: A ROM
based O.S. for the Z81.

* Advanced CP/M: Boosting Performance.
* Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl terminal
based systems.

¢ K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

¢ The ZCPR3 Corner: NZCOM and ZC-
PR34.

lssue Number 33:

* Data File Conversion: Writing a filter to
convert foreign file formats.

* Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

¢ DataBase: The first in a series on data
bases and information processing.

* SCSI for the 5-100 Bus: Another example
of SCSI's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a 280 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

* ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

Issue Number 34:

¢ Developing a File Encryption System.
Scramble data with your customized en-
cryption/password system.

e DataBase: A continuation of the
database primer series.

e A Simple Multitasking Executive:
Designing an embedded controlier
multitasking system.

e ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

e New Microcontroliers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

» Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM2.2.

e Macintosh Data File Conversion in Tur-
bo Pascal.

lssue Number 35:

e All This & Modula-2: A Pascal-like alter-
native with scope and parameter passing.

e A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiable assem. souce code.
* Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Intei and Motorola CPUs.
* S$-100 Eprom Burner: a project for S-100
hardware hackers.

s Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

+ REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

* ZCPR3 Corner: How shells work,
cracking code, and remaking WordStar 4.0.

Issue Number 36:

¢ Information Engineering: Introduction

* Modula-2: A list of reference books

¢ Temperature Measurement & Controk:
Agricultural computer application

s ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFiLEl
* Real Computing: NS32032 hardware for
experimenter, CPU’s in series, software
options

* SPRINT: A review

¢ ZCPRJ3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

* Advanced CPIM:
programming

Environmental

Issue Number 37:

¢ C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

* ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

* Information Engineering: Basic Concep-
ts; fields, field definition, client
worksheets

e Shelis: Using ZCPR3 named shell
variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

¢ Advanced CP/M: Raw and cooked con-
sole /O

* Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

e« 72SDOS-Anatomy of an Operating
System: Part 1

Issue Number 38:

® C Math: Handling Dollars and Cents
With C.

e Advanced CP/M: Batch Processing
and a New ZEX.

e C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

® The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security un-
der Z-Systems.

¢ Information Engineering: The portable
Information Age.

o Computer Aided Publishing: Introduc-
tion to publishing and Desk Top Publish-
ing.

e Shells: ZEX and hard disk backups.

e Rea! Computing: The National Semi-
conductor NS320XX.

e ZSDOS--Anatomy of an Operating Sys-
tem, Part 2.

TCJ ORDER FORM

Subscriptions U.S. Canada Surface Total
Foreign
6 issues per year
0O New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00

Back Issue§s ————— ——————(— — — — —— $3.50ea. $3.50ea. $4.75ea.

Sixormore -———m H—Mm—7Mm—1 /"""« —~(— ——— $3.00 ea. $3.00 ea $4.25 ea.

#'s

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank.

O Checkenclosed O VISA O MasterCard Card#

Expiration date

Name

Address

City

State

Z1

#39

THE COMPUTER JOURNAL

190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

Advanced CP/M

(Continued from Page 22)

Keep the Mail Coming!

We TCJ columnists thrive on your
suggestions and objections. The inevitable
production lag of a journal means that
when you first receive TCJ there is barely
time left to submit copy for the next issue.

Do you have another slant on the is-
sues covered here? What topics would
you like us to take up next time? Sit down
at the keyboard and write, or pick up the

- phone -- now, while your ideas are churn-
~ ing.

A Trap Door Puzzle

Assuming the following code is in
memory, what’s left in memory after the
the code at 100h has executed?

org 38h

PopP de

push hl

ret 38h

org 100h

1d sp, (0006)
1d hl,0C7C7h
rst 38h

How would you load it into memory?
Testit? @

Editorial

" (Continued from page 2)

users. Computers are simply following the
marketplace in this regard.” With articles
such as “The Meaning of Good Source
Code,” “What Makes Tailoring Code Dif-
ficult,” “Vertical & Diagonal Markets &
the UNIX System,” “How to Capitalize
on Vertical Markets,” and “Ten Rules for
Selecting a Vertical or Diagonal Market,”
it is very helpful reading--even for people
who are not now using UNIX.

More applications are going to have to
operate as toolkits which can provide dif-
ferent features at different times as the
needs change.

A wordprocessor is a good example.
When I am working on a large novel of a
thousand pages or more, I want an editor
which is very fast so that I can work with-
out losing my train of thought. I don’t
need formatting, because I have no idea
of what page design the publisher will se-
lect. I don’t want it to natter at me if I
misspell a word, I'll take care of that later.
I just want to get words and thoughts on

The Computer Journal / #39

disk. Partial sentences. Jumbied up syn-
tax. Just get the thoughts down for later
nit-picking. For hard copy print out I just
want word wrapped text with paragraph
breaks--no centering, no justification, no
underlining, no boldfacing, and no con-
densed or expanded width characters.
None of the fancy features which all of the
vendors are rushing to incorporate.

For producing the magazine, the re-
quirements are entirely different. Then 1
want to see line and page breaks with the
type font and page design I'll use for the
final output. I'll also want to see titles,
subtitles, headers, footers, and pagination
in actual size and position. I also need an
output program to drive the laser printer
to produce exactly what I've seen on the
screen.

These are two different needs, but I
don’t want to learn two different sets of
commands. I want one program which
can be tailored to my needs. I may work
on the novel for two hours, then on the
magazine for an hour, then write a few
letters, and return to the novel. ’ll also
squeeze in some C programming. What I
want is something which can change as 1
change my tasks. I don’t do only one type
of work such as a secretary in an office
might do, so the program has to be able to
handle a wide variety of jobs. But, I am
uncomfortable with a large, siow, clumsy
program which tries to do everything for
everybody at the same time.

I would like to see a system that con-
tains separate modules for editing, page
preparation, and runoff. The modules
would be able to be customized for the
current task, and used separately or to-
gether as needed. My ideal system does
not exist, and probably never will exist. As
the wordprocessors add more page prepa-
ration features, and the page preparation
programs add more editing features, the
differences between them will diminish
and systems which can do the entire job
will evolve.

Users’ toolkits are also very much
needed in other areas, such as data and
management information systems. There
are database development programs such
as dBXL, FoxBASE, Clipper, and Para-
dox, and there are canned accounting
programs such as general ledger and ac-
counts receivable. But, there are many
application specific requirements, such as
order entry and processing, or customer
contacts, which can not be met with
canned programs. Small businesses can-
not afford (or won’t pay for) professional
programming assistance. They need a

toolkit which will allow them to create
their own custom program without get-
ting involved with programming details.

There are application generators
which claim that they will generate the
database application you need. We will be
taking a very close look at them in order
to determine just how extensive of a sys-
tem they can generate. Everyone has their
wordprocessor and spreadsheet, and DTP
is becoming mature. Data and informa-
tion management is the next application
which will be opened up to the user. The
demand is very real and very widespread--
it will be a very fruitful field for those who
write the software and templates for the
user.

Portability

The consumer demand for portability
is increasing. Not only the ability to trans-
fer data which I discussed in issue #38,
but also the transfer of skills, and pro-
grams. Software of the future will not be
written for any specific operating system.
You will be able to slap in the disk (or
what ever other storage media we use
then) with your favorite wordprocessor,
and run it, regardless of who made the
hardware, what CPU it uses, or the details
of the operating system. The software will
make general calls, and all hardware sys-
tems will include the code to convert
those calls to conform to their operating
system specific requirements. Something
like what the P-System tried to do, but
this time much more efficient and faster.

There will still be system specific soft-
ware which can utilize non-standard sys-
tem characteristics for critical dedicated
applications, but the majority of end user
software will run on any system. The only
people who will be concerned with the
details of the individual systems will be the
programmers who design and code the
system specific special applications.

I’'m not sure that this will be entirely a
good thing, because it will force medioc-
rity and stifle development.

Standardization is necessary for mass
markets. Our cars all have the steering
wheel on the same side (at least here in
the U.S.), and the brakes are a pedal on
the floor instead of some being a lever on
the dash and others a pull cord from the
roof. A reasonably experienced driver can
drive any standard commercial car, but
not an Indy 500 racer.

The computer industry is going to
have to standarize whether we like it or
not. ®

37

The Computer Corner

(Continued from page 40)

68HC11

I mentioned before how my boss had
acquired a Motorola 68HC11 evaluation
unit. In the literature was a flier from New
Micro Forth. Well I spent $40 and bought

" a ROM for the unit. This is not a full

evaluation but a contest board. Motorola
has contests from time to time and gives
these boards away. Their objective is to
sell chips, and giving whole systems away
-to get people to use their products works
perfectly for them. I have been playing

" with the board and have had lots of fun.

After I got my Forth ROM and manu-
als from New Micro, I took it to one of
our local Forth meetings. I had a LED
display attached and a variable resistor
feeding the A/D converter. The objective
was to write a Forth routine to convert
the A/D signal toa LED output. The only
information I gave them was the output
and input port address. Three people
tried it and all had something working in
15 to 20 minutes. The point of interest
was how each person took a different ap-
proach to the problem. We all had a great
time watching each other and plan on
bringing in a project every month from
nOow On.

The New Micros Forth works great. I
needed to control a stepper motor for
some tests and so used their unit to pro-

. gram it. My stepper was working in a hour

and I had a complete program in two
nights of playing around. I have included
the screens just to show how little it takes
to make it work in Forth. I found some C
source for the same operation and was
appalled at how much coding was re-
quired. For our testing the ability to
change variables on the fly was actually
more important than anything else.

I like the New Micros products and
software. I found the manuals to be excel-
lent despite a few minor typos. For a be-
ginner the explanation on starting Forth is
excellent. Their way of handling word
definitions takes a few minutes to under-
stand, but once mastered worked well for
me. I find it close to F83 so users of that
Forth will need little book work. There
are a few bugs I found, and the issue 9 of
“More on NC4000” has a bug list in it (by
Bill Muench, pp. 22, printed by Offete
Enterprises, (415)574-8350 or from FIG,
$15).

If you are looking for embedded sys-
tem controllers where you may need to

38

Forth code for stepper motor operation on New Micros 68HC11:

HEX (this means accept numbers in HEX format)
FF B004 C! (these steps are needed to shift the)

c004 1C ! dictionary operation from the 68HCll)
50 1E 1 internal RAM memory to the external }
C060 22 1t larger 8K memory space.)

(
(
(

FORGET TASK (Now that you have more memory space)

€080 DP 1! { we reset the line length, and dicticnary)
(
(
(

00 B030 C! peinters, followed by making all the I/O)
FF B007 Cit lines in known states, in our case turn the)
FF B003 C! notor phase drivers off.)

VARIABLE DELAY (this starts the stepper program by first)

01 DELAY CI (defining variables and filling them with values)
VARIABLE CURPOS (there is more than one way to do this, I am)
0 CURPOS ! (storing values into the the variable)
VARIABLE PHASE (alternately you can place values into the next)
0 PHASE C! (dictionary location by using CREATE and comma -~ the)
VARIABLE DIR? (choice is yours to make)
0 DIR? CI (DELAY is how fast the stepper pulses occur)
VARIABLE #STEP (CURPOS is current position in pulses)
0 #STEP | (PHASE which stepper motor phases to power)}
CREATE PTEL (make a table of what values to send)
EF7F , (to actual I/O port for each of the phases)
DF C, BF C, (of the stepper motor - 4)(using comma here)
(and using C, 16 and 8 bit stores into dictionary)
: DELAY1 (-) DELAY C@ 0 DO LOOP ; (this is our delay time)
: DOSTEP (~) PHASE C@ PTBL + C@ B003 C! ; { this steps the motor)
: PCHK+ (- PHASE) PHASE C8@ 1 + DUP 4 = IF DROP O THEN ; (go positive)
: PCHK- (- PHASE) PHASE C8 1 - DUP -1 = IF DROP 3 THEN ; (go negative)
(phase is 0 to 3 so must roll over to 0 from a 4)
: GETPHASE (-) DIR? C@ 0= IF PCHK+ PHASE C!

ELSE PCHK-~ PHASE C! THEN ;
(getphase determines direction then up/down phase table pointer)
s MOVE (-) #STEP @ 0 DO GETPHASE DOSTEP DELAY1l LOOP ;
(move the motor x number of steps using do loop)
CHRKPOS (NEWPOS -~ DIR } DUP CURPOS @ DUP ROT <
IF - #STEP | 0

ELSE SWAP - #STEP ! 4 THEN ;
{ check position value and adjust to provide number of steps
needed by subtracting current position from desired position)

: CUR+ (-) #STEP @ CURPOS @ + CURPOS ! ; (update current position }
: CUR~- (-) CURPOS @ #STEP @ - CURPOS ! ; (update in negative direction)
¢ SWDIR (DIR -) DUP DIR? C! 0= IF CUR+

ELSE CUR- THEN ; (set direction flag)
¢ GOPOS (NEWPOS -) DUP CURPOS € = IF EXIT

THEN CHKPOS SWDIR MOVE ;
(update the position variables, check for proper position,
change direction, and then move the stepper to new position,
exit if no change in position)
: NEW (n -) GOPOS ." CUR " CURPOS € U. ." STEP " #STEP @ U. ;
(this is the main loop of the program - you entexr 45 NEW and the
stepper will move 45 steps in positive direction. If 10 NEW is
entered next, it will go negative or back 35 steps. NEW will
print on the screen the current postion value and the number of
steps taken. Delay is adjusted to prevent loss of step pulses -
if too fast motor doesn't move. Start DELAY at a large value -
then scale back for desired epeed. I use lots of variables
instead of stack operation due to need to change the values -
more stack usage would be faster - but harder to change and to
follow for the beginner. This also makes it a little more like
Object Oriented programming. The (~) means nothing on the stack
is used by the program.)

change parameters on the fly, New Mi-
cros has several products for you. One of

want to get from the power plant.

our members has his $99 computer con-
trolling a modem at home. This allows
him to call home and test software ideas
he is working on at work. They use Forth
to gather and sort data from a nuclear
power plant. This is done remotely over
the phone lines, and the little 68HC11
running Forth emulates the data they

More CAD
I am still using ORCAD for schematic
work. Lately I have been doing the
printed circuit designs and using OR-
CADPCB. The PCB program I am afraid
to say is not as good as the schematic cap-

(Continued on page 39)

The Computer Journal / #39

The Computer Corner
(Continued from page 38)

ture part. I have found lots of bugs and
some hard to deal with problems. They
have promised an updated version next
month. One problem that has cost me a
lot of time is the text operation. This is to
put text on the silk screen. The first time I
found the problem was trying to change a
device part number, I could not do it. The
next time I wanted to add text, like a copy-
right name, and found the steps to be al-
most impossible to master.

I find ORCAD easy to use for almost
everything and it has been a great pro-
gram for most operations. My solutions
for the text problem however involves us-
ing DEBUG and changing the HEX file
data. This has been the only way I have
been able to change text once the board
design has been created. My best word of
caution is not to layout the board without
being very close to the final design. I laid
out at least six or seven boards before I
got down which steps to do in which or-
der. For a product costing $1500, I feel

the problems don’t reflect the cost. For
that much money you would expect better
than you seem to get. If they continue to
provide free updates, good telephone
support, and you can work around the
problems, then the cost may be justified.
Last time I said they didn’t allow for
printer output in PCB. They gave me the
name of a company that has a program
that converts plotter data to Epson
printer output (actually most common
printers supported). We got the program
and it works great. It is faster than any
graphic layout program I have seen. It is
called FPLOT and worth every part of the
$64 they charge. We have used it with
ACAD and feel it might work with desk
top publishing as well. Actually it will work
with any program that can produce HP-
GL plot files, including your own. Give
them a try.

Parting Shots

As 1 draw this column to a close, I
would like to comment on the rising tide
of UNIX backing. By backing I mean
media articles that keep saying how Unix

will be your next operating system. I know
UNIX has plenty of advantages, and as
system memory and hard disk capacities
increase it will find more homes. But to
say that most users will be using it is ri-
diculous. The established base of DOS
users will not change, and as yet UNIX
has not shown anything that can provide
users the type of interface for so few dol-
lars as DOS.

Enjoy computing and try some of the
little micros, they make great fun projects.
I would like to hear from people about
their little projects. If we get enough inter-
est, we may even have a contest for the
most interesting and worthless design.
The project’s only redeeming value
should be educational. Something that
does bell ringing and light flashing based
on the color of a shirt. WHY? only for
FUN! e

Products Mentioned

FPLOT Corp.
Suite 605
24-16 Steinway St.
Astoria, N.Y. 11103
(212) 418-8469

Q
$;$

Hot off
the Press!

A book for anyone
programming in Turbo Pascal who
wants to learn more. Improve your soft-
ware projects by discovering the tricks
of user interface design with Rick
Gessner;, consider the question of code
as data with well-known writer Jeff
Duntemann in his chapter on procedural

niques; learn a lot about 5.0 graphics
from Dr. John Figueras; work with
David

E‘:ﬁ:ﬁfﬂ ... presenting the best that several intelligent
nating persons have to offer. .. diverse and useful.

history of Dr. Dobbs Journal (Sept 1989)

calendar

theory and follow his algorithm devel-
opment for a very thorough dates unit;
and finally, learn from Lane Ferris’ su-
perbly written unit which allows you to
develop TSR programs that mulititask
with ordinary DOS programs.

More

All of that and more, because you
also receive all of the source code on an
MS DOS disk which comes with the
book at no extra charge. Included on the
disk are some additional FREE pro-
grams that are yours to use: a README

ORDER FROM:
The Computer Journal

190 Sullivan Crossroad

Columbia Falls, MT

file called TYPERITE.EXE, a de-ar-

code you produce and to precisely chiving program (UNPAK.EXE), and a 59912 "\)9 &

predict run time from Chuck Burchard; DOS shell called DISKTOOL.EXE that (406) 2679119 ’\ob O%

follow Joe Sroczynski through a devel- allows you to COPY, MOVE, DE- \5\0 Q <
LETE, RENAME, and VIEW files. S .5

opment of DOS management tech-

The Computer Journal / #39 39

|
\
types; learn to refine the timing of the

The Computer Corner

by Bill Kibler

Fatherhood--I hope all those who have
become recent fathers are getting more
sleep than I am. As you can guess my son
came and my sleep vanished. I am still
working but find it hard at times. This re-
ally hasn’t slowed my work down as we get
closer to the software stage.

Product Stages

It occurred to me the other day, how
many stages a product goes through be-
fore becoming real. We started out talk-
ing with the prospective company and de-
termining their needs. From there you
make an educated guess at what products
you will use, along with their cost. You
roll your dice and guess at how many
hours it will take to do the design, product
selection, programming, hardware layout,
and proto-typing. To this time table you
put a cost, added 20% for profit, and then
- add 20% for errors and over runs.

Looking back at my boss’s bids and
what has been happening, I can see that
product selection is more important than
any other stage. Your choice of devices
can make or break the product. I have
spent 90% of product selection on three
items and all in twice our estimated time.
The real killer was a vacuum sensor. The
system requires a narrow range of vac-
uum readings and most sensors are for 1
PSI up. We needed 67 to 150 MTORRs.
Ifyou are like me, the terms PSI has some
meaning, but MTORRS?

I now know the difference between
PASCALS, TORRS, PSI, MBAR, and
Inches of mercury. I didn’t know we had
S0 many ways of measuring air pressure
and vacuums. It turned out our needs fell
between cheap devices for measuring air
pressure and the expensive vacuum meas-
uring systems. I found some items costing
more than our whole product. The an-
swer was to use a standard sensor with
our own circuit. The sensors we needed
were not very expensive, nor big sellers,

40

but companies making the units were not
willing to give me much information.

After spending several weeks going
around with the manufactures, I finally
got a support tech to tell me which pins
needed what. That was the sum total of
information available on the sensor I
chose. No fancy literature packets, no
reams of charts, and no samples of circuit
usage. What 1 did was buy a complete
meter unit and dissect it. That combined
with proto-typing a circuit answered the
design questions. This stage took almost
as much time as we had allotted for the
entire product selection process.

The CPU

Not all product or design selections
are problems, the CPU was simple. I con-
sidered several types and needed one that
had a A/D converter, EPROM, enough I/
O lines and be cheap. The choice is Mo-
torola’s 68705R3. The support I can get
from Motorola is many times better than
those selling vacuum devices. I found they
also have a BBS on line to get free soft-
ware for their CPUs. [(512)891-3733
(8N1) 300-1200-2400}.

I looked at many other devices, but
cost or design limits prevent their use.
Motorola is the leader in small control-
lers, in my mind that is. The reason being
their support and price structure. I looked
at some Intel versions and their cost was
prohibitive and they lacked any form of
support. Support is Motorola’s strong
point.

I have talked with several Motorola
technical support people and have gotten
quick and straight answers. A similar dis-
cussion with Intel resulted in more ques-
tions than answers. Motorola’s support
for their MCUs (as they call them--Micro-
Controller Units) is a line of proto-typing
boards. These boards are about $500
each and can emulate an embedded
MCU. They usually have a monitor pro-

gram to control emulation and RAM to
use in place of the MCU’s ROM.

Their next support item is frequent
training packets. We just got the one for
their 68HC705 series and if we complete
all the course work it may cost us nothing.
The sale price is $87 over their regular
$165. My only problem is we are using the
68705R3 and NOT 68HC705s. If you
can’t see much difference between those
two device numbers, you are a bit like me.
After the box came, I realized there was a
difference between the devices.

Motorola has two lines of products
going for them. Their old line consists of
HMOS devices and the new line is
HCMOS based products. All of these are
based on the original 6800 internal design.
The process of construction and pin lay-
out are the only differences. So you need
to pay attention or you might miss the
“HC” signifier. The “HC” means it is
HCMOS based and the pin out will be
different. The clock speed is half as well,
but the chip functions similarly other than
that. The only programming difference is
a multiply instruction which came with the
6801 devices.

The 68HC705 series is a relatively new
line for Motorola and the purpose of the
training package is to get more people
interested in their products. 1 found the
internal programming information the
same and helpful for any of their 6805
based devices. So even if you are not
interested in the 68HC705, their training
course might be very useful. The board
that comes with the unit makes a great
programming station as well as prototype
system. Motorola’s bigger evaluation
units are needed however if you really
want to get into run time emulation op-
eration without programming a device.

(Continued on page 38)

The Computer Journal / #39

